湖北進(jìn)口英飛凌infineon整流橋模塊廠家電話

來源: 發(fā)布時間:2024-01-24

    從前面對整流橋帶散熱器來實現(xiàn)其散熱過程的分析中可以看出,整流橋主要的損耗是通過其背面的散熱器來散發(fā)的,因此在此討論整流橋殼溫如何確定時,就忽約其通過引腳的傳熱量?,F(xiàn)結(jié)合RS2501M整流橋在110VAC電源模塊上應(yīng)用的損耗(大為)來分析。假設(shè)整流橋殼體外表面上的溫度為結(jié)溫(即),表面換熱系數(shù)為(在一般情況下,強迫風(fēng)冷的對流換熱系數(shù)為20~40W/m2C)。那么在環(huán)境溫度為,通過整流橋正表面散發(fā)到環(huán)境中的熱量為:忽約整流橋引腳的傳熱量,則通過整流橋背面的傳熱量為:由于在整流橋殼體表面上的兩個傳熱途徑上(殼體正面、殼體背面)的熱阻分別為:根據(jù)熱阻的定義式有:所以:由上式可以看出:整流橋的結(jié)溫與殼體正面的溫差遠(yuǎn)遠(yuǎn)小于結(jié)溫與殼體背面的溫差,也就是說,實際上整流橋的殼體正表面的溫度是遠(yuǎn)遠(yuǎn)大于其背面的溫度的。如果我們在測量時,把整流橋殼體正面溫度(通常情況下比較好測量)來作為我們計算的殼溫,那么我們就會過高地估計整流橋的結(jié)溫了!那么既然如此,我們應(yīng)該怎樣來確定計算的殼溫呢?由于整流橋的背面是和散熱器相互連接的,并且熱量主要是通過散熱器散發(fā),散熱器的基板溫度和整流橋的背面殼體溫度間只有接觸熱阻。一般而言,接觸熱阻的數(shù)值很小。 將交流電轉(zhuǎn)為直流電的電能轉(zhuǎn)換形式稱為整流(AC/DC變換),所用電器稱為整流器,對應(yīng)電路稱為整流電路。湖北進(jìn)口英飛凌infineon整流橋模塊廠家電話

    所述變壓器的第二線圈一端經(jīng)由所述二極管d及所述第五電容c5連接所述第二線圈的另一端。如圖6所示,所述二極管d的正極連接所述變壓器的第二線圈,負(fù)極連接所述第五電容c5。如圖6所示,所述負(fù)載連接于所述第五電容c5的兩端。具體地,在本實施例中,所述負(fù)載為led燈串,所述led燈串的正極連接所述二極管d的負(fù)極,負(fù)極連接所述第五電容c5與所述變壓器的連接節(jié)點。如圖6所示,所述第三采樣電阻rcs3的一端連接所述合封整流橋的封裝結(jié)構(gòu)1的采樣管腳cs,另一端接地。本實施例的電源模組為隔離場合的小功率led驅(qū)動電源應(yīng)用,適用于兩繞組flyback(3w~25w)。實施例四本實施例提供一種合封整流橋的封裝結(jié)構(gòu),與實施例一~三的不同之處在于,所述合封整流橋的封裝結(jié)構(gòu)1還包括電源地管腳bgnd,所述整流橋的第二輸出端不連接所述信號地管腳gnd,而連接所述電源地管腳bgnd,相應(yīng)地,所述整流橋的設(shè)置方式也做適應(yīng)性修改,在此不一一贅述。如圖7所示,本實施例還提供一種電源模組,所述電源模組與實施例二的不同之處在于,所述電源模組中的合封整流橋的封裝結(jié)構(gòu)1采用本實施例的合封整流橋的封裝結(jié)構(gòu)1,還包括第六電容c6及第二電感l(wèi)2。具體地。 北京哪里有英飛凌infineon整流橋模塊貨源充足整流橋的整流作用是通過二極管的單向?qū)ㄔ韥硗瓿晒ぷ鞯摹?/p>

    高壓端口hv通過金屬引線連接所述高壓供電基島13,進(jìn)而實現(xiàn)與所述高壓供電管腳hv的連接,接地端口gnd通過金屬引線連接所述信號地基島14,進(jìn)而實現(xiàn)與所述信號地管腳gnd的連接。需要說明的是,所述邏輯電路122可根據(jù)設(shè)計需要設(shè)置在不同的基島上,與所述控制芯片12的設(shè)置方式類似,在此不一一贅述作為本實施例的一種實現(xiàn)方式,所述漏極管腳drain的寬度大于,進(jìn)一步設(shè)置為~1mm,以加強散熱,達(dá)到封裝熱阻的作用。本實施例的合封整流橋的封裝結(jié)構(gòu)采用三基島架構(gòu),將整流橋、功率開關(guān)管、邏輯電路及高壓續(xù)流二極管集成在一個引線框架內(nèi),由此降低封裝成本。如圖4所示,本實施例還提供一種電源模組,所述電源模組包括:本實施例的合封整流橋的封裝結(jié)構(gòu)1,第二電容c2,第三電容c3,一電感l(wèi)1,負(fù)載及第二采樣電阻rcs2。如圖4所示,所述合封整流橋的封裝結(jié)構(gòu)1的火線管腳l連接火線,零線管腳n連接零線,信號地管腳gnd接地。如圖4所示,所述第二電容c2的一端連接所述合封整流橋的封裝結(jié)構(gòu)1的高壓供電管腳hv,另一端接地。如圖4所示,所述第三電容c3的一端連接所述1高壓供電管腳hv,另一端經(jīng)由所述一電感l(wèi)1連接所述合封整流橋的封裝結(jié)構(gòu)1的漏極管腳drain。如圖4所示。

    使模塊具有有效值為2.5kV以上的絕緣耐壓。3、電力半導(dǎo)體芯片:超快恢復(fù)二極管(FRED)和晶閘管(SCR)芯片的PN結(jié)是玻璃鈍化保護,并在模塊制作過程中再涂有RTV硅橡膠,并灌封有彈性硅凝膠和環(huán)氧樹脂,這種多層保護使電力半導(dǎo)體器件芯片的性能穩(wěn)定可靠。半導(dǎo)體芯片直接焊在DBC基板上,而芯片正面都焊有經(jīng)表面處理的鉬片或直接用鋁絲鍵合作為主電極的引出線,而部分連線是通過DBC板的刻蝕圖形來實現(xiàn)的。根據(jù)三相整流橋電路共陽和共陰的連接特點,F(xiàn)RED芯片采用三片是正燒(即芯片正面是陰極、反面是陽極)和三片是反燒(即芯片正面是陽極、反面是陰極),并利用DBC基板的刻蝕圖形,使焊接簡化。同時,所有主電極的引出端子都焊在DBC基板上,這樣使連線減少,模塊可靠性提高。4、外殼:殼體采用抗壓、抗拉和絕緣強度高以及熱變溫度高的,并加有40%玻璃纖維的聚苯硫醚(PPS)注塑型材料組成,它能很好地解決與銅底板、主電極之間的熱脹冷縮的匹配問題,通過環(huán)氧樹脂的澆注固化工藝或環(huán)氧板的間隔,實現(xiàn)上下殼體的結(jié)構(gòu)連接,以達(dá)到較高的防護強度和氣閉密封,并為主電極引出提供支撐。3整流橋模塊的優(yōu)點整流橋模塊有著體積小、重量輕、結(jié)構(gòu)緊湊、外接線簡單、便于維護和安裝等優(yōu)點。 限制蓄電池電流倒轉(zhuǎn)回發(fā)動機,保護交流發(fā)動機不被燒壞。

    1)、整流橋殼體表面散熱熱阻a)整流橋正面殼體的散熱熱阻:同不帶散熱器的強迫風(fēng)冷一樣:b)整流橋背面殼體的散熱熱阻:假設(shè)忽約整流橋與殼體的接觸熱阻,則:;選擇散熱器與環(huán)境間熱阻的典型值為:于是:則整流橋通過殼體表面散熱的總熱阻為:2)、流橋通過引腳散熱的熱阻:此時的熱阻同整流橋不帶散熱器進(jìn)行強迫風(fēng)冷時的情形一樣,于是有:于是我們可以得到,在整流橋帶散熱器進(jìn)行強迫風(fēng)冷時的散熱總熱阻為上述兩個傳熱途徑的并聯(lián)熱阻:仔細(xì)分析上述的計算過程和各個傳熱途徑的熱阻數(shù)值,我們可以得出在整流橋帶散熱器進(jìn)行強迫風(fēng)冷時的如下結(jié)論:①在上述的三個傳熱途徑中(整流橋正面?zhèn)鳠?、整流橋背面通過散熱器的傳熱和整流橋通過引腳的傳熱),整流橋背面通過散熱器的傳熱熱阻小,而通過殼體正面的傳熱熱阻大,通過引腳的熱阻居中;②比較整流橋散熱的總熱阻和通過背面散熱器傳熱的熱阻數(shù)值可以發(fā)現(xiàn):通過殼體背面散熱器傳熱熱阻與整流橋的總熱阻十分相當(dāng)。其實該結(jié)論也說明了,在此種情況下,整流橋的主要傳熱途徑是通過殼體背面的散熱器來進(jìn)行的,也就是整流橋上絕大部分的損耗是通過散熱器來排放的,而通過其它途徑(引腳和殼體正面)的散熱量是很少的。 整流橋通常是由兩只或四只整流硅芯片作橋式連接,兩只的為半橋,四只的則稱全橋。北京進(jìn)口英飛凌infineon整流橋模塊廠家供應(yīng)

在整流橋的每個工作周期內(nèi),同一時間只有兩個二極管進(jìn)行工作。湖北進(jìn)口英飛凌infineon整流橋模塊廠家電話

    并且兩個為對稱設(shè)置,在所述一限位凸部101上設(shè)有凹陷部11,所述一插片21嵌入到所述凹陷部11當(dāng)中。具體的,所述第二插片22為金屬銅片,在所述一限位凸部101上設(shè)有插接槽100,所述第二插片22的一端插入到所述插接槽100當(dāng)中;并且在所述插接槽100的內(nèi)壁上設(shè)有開口104,所述第二插片22上設(shè)有卡扣凸部220,所述卡扣220可卡入到所述開口104當(dāng)中;在所述第二插片22的側(cè)壁上設(shè)有電連凸部221,所述電連凸部221與所述第二插片22一體成型;所述整流橋堆3一側(cè)設(shè)凸出部31,所述凸出部31為兩個,一個凸出部31對應(yīng)一個電連凸部221;所述凸出部31與所述電連凸部221通過焊錫連接在一起;在所述整流橋堆3的另一側(cè)設(shè)有兩個凸部32,其凸部32和凸出部31完全相同;所述凸部332所述一插片21的端部焊錫在一起;在其他實施例中,焊錫連接的方式也可采用電阻焊的連接方式,其為現(xiàn)有技術(shù)。同時在所述一限位凸部101上具有凹槽部103,所述整流橋堆3放置在所述凹槽部103當(dāng)中,從而實現(xiàn)對所述整流橋堆3進(jìn)行定位。顯然,所描述的實施例是本實用新型的一部分實施例,而不是全部的實施例。基于本實用新型中的實施例,本領(lǐng)域普通技術(shù)人員在沒有做出創(chuàng)造性勞動前提下所獲得的所有其他實施例。 湖北進(jìn)口英飛凌infineon整流橋模塊廠家電話