河南SEMIKRON西門康IGBT模塊服務(wù)電話

來源: 發(fā)布時間:2024-03-29

    該igbt芯片上設(shè)置有:工作區(qū)域、電流檢測區(qū)域和接地區(qū)域;其中,igbt芯片還包括第1表面和第二表面,且,第1表面和第二表面相對設(shè)置;第1表面上設(shè)置有工作區(qū)域和電流檢測區(qū)域的公共柵極單元,以及,工作區(qū)域的第1發(fā)射極單元、電流檢測區(qū)域的第二發(fā)射極單元和第三發(fā)射極單元,其中,第三發(fā)射極單元與第1發(fā)射極單元連接,公共柵極單元與第1發(fā)射極單元和第二發(fā)射極單元之間通過刻蝕方式進行隔開;第二表面上設(shè)有工作區(qū)域和電流檢測區(qū)域的公共集電極單元;接地區(qū)域設(shè)置于第1發(fā)射極單元內(nèi)的任意位置處;電流檢測區(qū)域和接地區(qū)域分別用于與檢測電阻連接,以使檢測電阻上產(chǎn)生電壓,并根據(jù)電壓檢測工作區(qū)域的工作電流。第二方面,本發(fā)明實施例還提供一種半導(dǎo)體功率模塊,半導(dǎo)體功率模塊配置有第1方面的igbt芯片,還包括驅(qū)動集成塊和檢測電阻;其中,驅(qū)動集成塊與igbt芯片中公共柵極單元連接,以便于驅(qū)動工作區(qū)域和電流檢測區(qū)域工作;以及,還與檢測電阻連接,用于獲取檢測電阻上的電壓。本發(fā)明實施例帶來了以下有益效果:本發(fā)明實施例提供了igbt芯片及半導(dǎo)體功率模塊,igbt芯片上設(shè)置有:工作區(qū)域、電流檢測區(qū)域和接地區(qū)域;其中。 在截止狀態(tài)下的IGBT,正向電壓由J2結(jié)承擔,反向電壓由J1結(jié)承擔。河南SEMIKRON西門康IGBT模塊服務(wù)電話

    所有人都知道IGBT的標準定義,但是很少有人詳細地、系統(tǒng)地從這句話抽絲剝繭,一層一層地分析為什么定義里說IGBT是由BJT和MOS組成的,它們之間有什么區(qū)別和聯(lián)系,在應(yīng)用的時候,什么時候能選擇IGBT、什么時候選擇BJT、什么時候又選擇MOSFET管。這些問題其實并非很難,你跟著我看下去,就能窺見其區(qū)別及聯(lián)系。為什么說IGBT是由BJT和MOSFET組成的器件?要搞清楚IGBT、BJT、MOSFET之間的關(guān)系,就必須對這三者的內(nèi)部結(jié)構(gòu)和工作原理有大致的了解。BJT:雙極性晶體管,俗稱三極管。內(nèi)部結(jié)構(gòu)(以PNP型BJT為例)如下圖所示。BJT內(nèi)部結(jié)構(gòu)及符號如同我上篇文章(IGBT這玩意兒——從名稱入手)講的,雙極性即意味著器件內(nèi)部有空穴和電子兩種載流子參與導(dǎo)電,BJT既然叫雙極性晶體管,那其內(nèi)部也必然有空穴和載流子,理解這兩種載流子的運動是理解BJT工作原理的關(guān)鍵。由于圖中e(發(fā)射極)的P區(qū)空穴濃度要大于b(基極)的N區(qū)空穴濃度,因此會發(fā)生空穴的擴散,即空穴從P區(qū)擴散至N區(qū)。同理,e(發(fā)射極)的P區(qū)電子濃度要小于b(基極)的N區(qū)電子濃度,所以電子也會發(fā)生從N區(qū)到P區(qū)的擴散運動。這種運動終會造成在發(fā)射結(jié)上出現(xiàn)一個從N區(qū)指向P區(qū)的電場,即內(nèi)建電場。 福建SEMIKRON西門康IGBT模塊聯(lián)系方式IGBT模塊具有節(jié)能、安裝維修方便、散熱穩(wěn)定等特點。

    本發(fā)明實施例還提供了一種半導(dǎo)體功率模塊,如圖15所示,半導(dǎo)體功率模塊50配置有上述igbt芯片51,還包括驅(qū)動集成塊52和檢測電阻40。具體地,如圖16所示,igbt芯片51設(shè)置在dcb板60上,驅(qū)動集成塊52的out端口通過模塊引線端子521與igbt芯片51中公共柵極單元100連接,以便于驅(qū)動工作區(qū)域10和電流檢測區(qū)域20工作;si端口通過模塊引線端子521與檢測電阻40連接,用于獲取檢測電阻40上的電壓;以及,gnd端口通過模塊引線端子521與電流檢測區(qū)域的第1發(fā)射極單元101引出的導(dǎo)線522連接,檢測電阻40的另一端還分別與電流檢測區(qū)域的第二發(fā)射極單元201和接地區(qū)域連接,從而通過si端口獲取檢測電阻40上的測量電壓,并根據(jù)該測量電壓檢測工作區(qū)域的工作電流。本發(fā)明實施例提供的半導(dǎo)體功率模塊,設(shè)置有igbt芯片,其中,igbt芯片上設(shè)置有:工作區(qū)域、電流檢測區(qū)域和接地區(qū)域;其中,igbt芯片還包括第1表面和第二表面,且,第1表面和第二表面相對設(shè)置;第1表面上設(shè)置有工作區(qū)域和電流檢測區(qū)域的公共柵極單元,以及,工作區(qū)域的第1發(fā)射極單元、電流檢測區(qū)域的第二發(fā)射極單元和第三發(fā)射極單元,其中,第三發(fā)射極單元與第1發(fā)射極單元連接。

    并在檢測電阻40上得到檢測信號。因此,這種將檢測電阻40通過引線直接與主工作區(qū)的源區(qū)金屬相接,可以避免主工作區(qū)的工作電流接地電壓對測試的影響。但是,這種方式得到的檢測電流曲線與工作電流曲線并不對應(yīng),如圖4所示,得到的檢測電流與工作電流的比例關(guān)系不固定,在大電流時,檢測電流與工作電流的偏差較大,此時,電流傳感器1的靈敏性較低,從而導(dǎo)致檢測電流的精度和敏感性比較低。針對上述問題,本發(fā)明實施例提供了igbt芯片及半導(dǎo)體功率模塊,避免了柵電極因?qū)Φ仉娢蛔兓斐傻钠睿岣吡藱z測電流的精度。為便于對本實施例進行理解,下面首先對本發(fā)明實施例提供的一種igbt芯片進行詳細介紹。實施例一:本發(fā)明實施例提供了一種igbt芯片,圖5為本發(fā)明實施例提供的一種igbt芯片的結(jié)構(gòu)示意圖,如圖5所示,在igbt芯片上設(shè)置有:工作區(qū)域10、電流檢測區(qū)域20和接地區(qū)域30;其中,在igbt芯片上還包括第1表面和第二表面,且,第1表面和第二表面相對設(shè)置;第1表面上設(shè)置有工作區(qū)域10和電流檢測區(qū)域20的公共柵極單元100,以及,工作區(qū)域10的第1發(fā)射極單元101、電流檢測區(qū)域20的第二發(fā)射極單元201和第三發(fā)射極單元202,其中,第三發(fā)射極單元202與第1發(fā)射極單元101連接。 IGBT的觸發(fā)和關(guān)斷要求給其柵極和基極之間加上正向電壓和負向電壓,柵極電壓可由不同的驅(qū)動電路產(chǎn)生。

    而是為了保護IGBT脆弱的反向耐壓而特別設(shè)置的,又稱為FWD(續(xù)流二極管)。二者內(nèi)部結(jié)構(gòu)不同MOSFET的三個極分別是源極(S)、漏極(D)和柵極(G)。IGBT的三個極分別是集電極(C)、發(fā)射極(E)和柵極(G)。IGBT是通過在MOSFET的漏極上追加層而構(gòu)成的。它們的內(nèi)部結(jié)構(gòu)如下圖:二者的應(yīng)用領(lǐng)域不同MOSFET和IGBT內(nèi)部結(jié)構(gòu)不同,決定了其應(yīng)用領(lǐng)域的不同。由于MOSFET的結(jié)構(gòu),通常它可以做到電流很大,可以到上KA,但是前提耐壓能力沒有IGBT強。其主要應(yīng)用領(lǐng)域為于開關(guān)電源,鎮(zhèn)流器,高頻感應(yīng)加熱,高頻逆變焊機,通信電源等高頻電源領(lǐng)域。IGBT可以做很大功率,電流和電壓都可以,就是一點頻率不是太高,目前IGBT硬開關(guān)速度可以到100KHZ,IGBT集中應(yīng)用于焊機,逆變器,變頻器,電鍍電解電源,超音頻感應(yīng)加熱等領(lǐng)域。MOSFET與IGBT的主要特點MOSFET具有輸入阻抗高、開關(guān)速度快、熱穩(wěn)定性好、電壓控制電流等特性,在電路中,可以用作放大器、電子開關(guān)等用途。IGBT作為新型電子半導(dǎo)體器件,具有輸入阻抗高,電壓控制功耗低,控制電路簡單,耐高壓,承受電流大等特性,在各種電子電路中獲得極的應(yīng)用。IGBT的理想等效電路如下圖所示,IGBT實際就是MOSFET和晶體管三極管的組合。 IGBT在開通過程中,大部分時間是作為MOSFET來運行的。貴州SEMIKRON西門康IGBT模塊銷售廠家

普通的交流220V供電,使用600V的IGBT。河南SEMIKRON西門康IGBT模塊服務(wù)電話

    分兩種情況:②若柵-射極電壓UGE<Uth,溝道不能形成,IGBT呈正向阻斷狀態(tài)。②若柵-射極電壓UGE>Uth,柵極溝道形成,IGBT呈導(dǎo)通狀態(tài)(正常工作)。此時,空穴從P+區(qū)注入到N基區(qū)進行電導(dǎo)調(diào)制,減少N基區(qū)電阻RN的值,使IGBT通態(tài)壓降降低。IGBT各世代的技術(shù)差異回顧功率器件過去幾十年的發(fā)展,1950-60年代雙極型器件SCR,GTR,GTO,該時段的產(chǎn)品通態(tài)電阻很??;電流控制,控制電路復(fù)雜且功耗大;1970年代單極型器件VD-MOSFET。但隨著終端應(yīng)用的需求,需要一種新功率器件能同時滿足:驅(qū)動電路簡單,以降低成本與開關(guān)功耗、通態(tài)壓降較低,以減小器件自身的功耗。1980年代初,試圖把MOS與BJT技術(shù)集成起來的研究,導(dǎo)致了IGBT的發(fā)明。1985年前后美國GE成功試制工業(yè)樣品(可惜后來放棄)。自此以后,IGBT主要經(jīng)歷了6代技術(shù)及工藝改進。從結(jié)構(gòu)上講,IGBT主要有三個發(fā)展方向:1)IGBT縱向結(jié)構(gòu):非透明集電區(qū)NPT型、帶緩沖層的PT型、透明集電區(qū)NPT型和FS電場截止型;2)IGBT柵極結(jié)構(gòu):平面柵機構(gòu)、Trench溝槽型結(jié)構(gòu);3)硅片加工工藝:外延生長技術(shù)、區(qū)熔硅單晶;其發(fā)展趨勢是:①降低損耗②降低生產(chǎn)成本總功耗=通態(tài)損耗(與飽和電壓VCEsat有關(guān))+開關(guān)損耗(EoffEon)。 河南SEMIKRON西門康IGBT模塊服務(wù)電話