廣西功率半導(dǎo)體IGBT模塊廠家直供

來源: 發(fā)布時間:2024-03-08

怎樣檢測變頻器逆變模塊?(2)判斷IGBT極性及好壞的方法判斷IGBT極性:選擇指針萬用表R×100Ω或R×1KΩ檔分別測量IGBT的任兩個極之間的正反向電阻,其中一極與其他兩極之間的正反向電阻均為無窮大,則判定該極為IGBT的柵極(G)。測量另外兩極的正反向電阻,在正向電阻時,紅表筆接的為IGBT的集電極(C),黑表筆接的為IGBT的發(fā)射極(E)。判斷IGBT好壞:選擇指針萬用表的R×10KΩ檔。黑表筆接集電極(C),紅表筆接發(fā)射極(E),用手同時觸擊一下集電極(C)和控制極(G)。若萬用表指針偏轉(zhuǎn)并站住,再用手同時觸擊一下發(fā)射極(E)和控制極(G),萬用表指針回零,則該IGBT為好的,否則為壞的IGBT。IGBT模塊采用預(yù)涂熱界面材料(TIM),能讓電力電子應(yīng)用實現(xiàn)一致性的散熱性能。廣西功率半導(dǎo)體IGBT模塊廠家直供

同一代技術(shù)中通態(tài)損耗與開關(guān)損耗兩者相互矛盾,互為消長。IGBT模塊按封裝工藝來看主要可分為焊接式與壓接式兩類。高壓IGBT模塊一般以標準焊接式封裝為主,中低壓IGBT模塊則出現(xiàn)了很多新技術(shù),如燒結(jié)取代焊接,壓力接觸取代引線鍵合的壓接式封裝工藝。隨著IGBT芯片技術(shù)的不斷發(fā)展,芯片的高工作結(jié)溫與功率密度不斷提高,IGBT模塊技術(shù)也要與之相適應(yīng)。未來IGBT模塊技術(shù)將圍繞芯片背面焊接固定與正面電極互連兩方面改進。模塊技術(shù)發(fā)展趨勢:無焊接、無引線鍵合及無襯板/基板封裝技術(shù);內(nèi)部集成溫度傳感器、電流傳感器及驅(qū)動電路等功能元件,不斷提高IGBT模塊的功率密度、集成度及智能度。IGBT的主要應(yīng)用領(lǐng)域作為新型功率半導(dǎo)體器件的主流器件,IGBT已廣泛應(yīng)用于工業(yè)、4C(通信、計算機、消費電子、汽車電子)、航空航天、等傳統(tǒng)產(chǎn)業(yè)領(lǐng)域,以及軌道交通、新能源、智能電網(wǎng)、新能源汽車等戰(zhàn)略性新興產(chǎn)業(yè)領(lǐng)域。1)新能源汽車IGBT模塊在電動汽車中發(fā)揮著至關(guān)重要的作用,是電動汽車及充電樁等設(shè)備的技術(shù)部件。IGBT模塊占電動汽車成本將近10%,占充電樁成本約20%。IGBT主要應(yīng)用于電動汽車領(lǐng)域中以下幾個方面:A)電動控制系統(tǒng)大功率直流/交流(DC/AC)逆變后驅(qū)動汽車電機。福建Mitsubishi 三菱IGBT模塊國內(nèi)經(jīng)銷第三代IGBT開始,采用新的命名方式。命名的后綴為:T3,E3,P3。

圖1單管,模塊的內(nèi)部等效電路多個管芯并聯(lián)時,柵極已經(jīng)加入柵極電阻,實際的等效電路如圖2所示。不同制造商的模塊,柵極電阻的阻值也不相同;不過,同一個模塊內(nèi)部的柵極電阻,其阻值是相同的。圖2單管模塊內(nèi)部的實際等效電路圖IGBT單管模塊通常稱為1in1模塊,前面的“1”表示內(nèi)部包含一個IGBT管芯,后面的“1”表示同一個模塊塑殼之中。2.半橋模塊,2in1模塊半橋(Halfbridge)模塊也稱為2in1模塊,可直接構(gòu)成半橋電路,也可以用2個半橋模塊構(gòu)成全橋,3個半橋模塊也構(gòu)成三相橋。因此,半橋模塊有時候也稱為橋臂(Phase-Leg)模塊。圖3是半橋模塊的內(nèi)部等效。不同的制造商的接線端子名稱也有所不同,如C2E1可能會標識為E1C2,有的模塊只在等效電路圖上標識引腳編號等。圖3半橋模塊的內(nèi)部等效電路半橋模塊的電流/電壓規(guī)格指的均是其中的每一個模塊單元。如1200V/400A的半橋模塊,表示其中的2個IGBT管芯的電流/電壓規(guī)格都是1200V/400A,即C1和E2之間可以耐受比較高2400V的瞬間直流電壓。不僅半橋模塊,所有模塊均是如此標注的。3.全橋模塊,4in1模塊全橋模塊的內(nèi)部等效電路如圖4所示。圖4全橋模塊內(nèi)部等效電路全橋(Fullbridge)模塊也稱為4in1模塊,用于直接構(gòu)成全橋電路。

墓他3組上橋臂的控制信號輸入電路與圖2相同,但3組15V直流電源應(yīng)分別供電,而下橋臂的4組則共用一個15V直流電源。圖2控制信號輸入電路(2)緩沖電路緩沖電路(阻容吸收電路)主要用于抑制模塊內(nèi)部的IGBT單元的過電壓和du/出或者過電流和di/dt,同時減小IGBT的開關(guān)損耗。由于緩沖電路所需的電阻、電容的功率、體積都較大,所以在IGBT模塊內(nèi)部并沒有專門集成該部分電路,因此,在實際的系統(tǒng)中一定要設(shè)計緩沖電路,通過緩沖電路的電容可把過電壓的電磁能量變成靜電能量儲存起來。緩沖電路的電阻可防止電容與電感產(chǎn)生諧振。如果沒有緩沖電路,器件在開通時電流會迅速上升,di/dt也很大,關(guān)斷時du/dt很大,并會出現(xiàn)很高的過電壓,極易造成模塊內(nèi)部IGBT器件損壞。圖3給出了一個典型的緩沖電路;有關(guān)阻值與電容大小的設(shè)計可根據(jù)具體系統(tǒng)來設(shè)定不同的參數(shù)。Easy封裝(俗稱“方盒子”):這類封裝是低成本小功率的封裝形式:工作電流從10A~35A。

溝道在緊靠柵區(qū)邊界形成。在C、E兩極之間的P型區(qū)(包括P+和P-區(qū))(溝道在該區(qū)域形成),稱為亞溝道區(qū)(Subchannelregion)。而在漏區(qū)另一側(cè)的P+區(qū)稱為漏注入?yún)^(qū)(Draininjector),它是IGBT特有的功能區(qū),與漏區(qū)和亞溝道區(qū)一起形成PNP雙極晶體管,起發(fā)射極的作用,向漏極注入空穴,進行導(dǎo)電調(diào)制,以降低器件的通態(tài)電壓。附于漏注入?yún)^(qū)上的電極稱為漏極(即集電極C)。IGBT的開關(guān)作用是通過加正向柵極電壓形成溝道,給PNP(原來為NPN)晶體管提供基極電流,使IGBT導(dǎo)通。反之,加反向門極電壓消除溝道,切斷基極電流,使IGBT關(guān)斷。IGBT的驅(qū)動方法和MOSFET基本相同,只需控制輸入極N-溝道MOSFET,所以具有高輸入阻抗特性。當(dāng)MOSFET的溝道形成后,從P+基極注入到N-層的空穴(少子),對N-層進行電導(dǎo)調(diào)制,減小N-層的電阻,使IGBT在高電壓時,也具有低的通態(tài)電壓。IGBT原理方法IGBT是將強電流、高壓應(yīng)用和快速終端設(shè)備用垂直功率MOSFET的自然進化。由于實現(xiàn)一個較高的擊穿電壓BVDSS需要一個源漏通道,而這個通道卻具有很高的電阻率,因而造成功率MOSFET具有RDS(on)數(shù)值高的特征,IGBT消除了現(xiàn)有功率MOSFET的這些主要缺點。雖然一代功率MOSFET器件大幅度改進了RDS(on)特性。英飛凌IGBT模塊選型主要是根據(jù)工作電壓,工作電流,封裝形式和開關(guān)頻率來進行選擇。河北FUJI富士IGBT模塊品質(zhì)優(yōu)異

IGBT工作電流能有150A,200A,300A,400A,450A。廣西功率半導(dǎo)體IGBT模塊廠家直供

但是在高電平時,功率導(dǎo)通損耗仍然要比IGBT技術(shù)高出很多。較低的壓降,轉(zhuǎn)換成一個低VCE(sat)的能力,以及IGBT的結(jié)構(gòu),同一個標準雙極器件相比,可支持更高電流密度,并簡化IGBT驅(qū)動器的原理圖。導(dǎo)通IGBT硅片的結(jié)構(gòu)與功率MOSFET的結(jié)構(gòu)十分相似,主要差異是IGBT增加了P+基片和一個N+緩沖層(NPT-非穿通-IGBT技術(shù)沒有增加這個部分)。如等效電路圖所示(圖1),其中一個MOSFET驅(qū)動兩個雙極器件?;膽?yīng)用在管體的P+和N+區(qū)之間創(chuàng)建了一個J1結(jié)。當(dāng)正柵偏壓使柵極下面反演P基區(qū)時,一個N溝道形成,同時出現(xiàn)一個電子流,并完全按照功率MOSFET的方式產(chǎn)生一股電流。如果這個電子流產(chǎn)生的電壓在,那么,J1將處于正向偏壓,一些空穴注入N-區(qū)內(nèi),并調(diào)整陰陽極之間的電阻率,這種方式降低了功率導(dǎo)通的總損耗,并啟動了第二個電荷流。的結(jié)果是,在半導(dǎo)體層次內(nèi)臨時出現(xiàn)兩種不同的電流拓撲:一個電子流(MOSFET電流);一個空穴電流(雙極)。關(guān)斷當(dāng)在柵極施加一個負偏壓或柵壓低于門限值時,溝道被禁止,沒有空穴注入N-區(qū)內(nèi)。在任何情況下,如果MOSFET電流在開關(guān)階段迅速下降,集電極電流則逐漸降低,這是因為換向開始后,在N層內(nèi)還存在少數(shù)的載流子(少子)。這種殘余電流值。廣西功率半導(dǎo)體IGBT模塊廠家直供