龍巖什么是AIGC弊端

來(lái)源: 發(fā)布時(shí)間:2023-11-04

    AIGC的產(chǎn)品形態(tài)有哪些?1、基礎(chǔ)層(模型服務(wù))基礎(chǔ)層為采用預(yù)訓(xùn)練大模型搭建的基礎(chǔ)設(shè)施。由于開發(fā)預(yù)訓(xùn)練大模型技術(shù)門檻高、投入成本高,因此,該層主要由少數(shù)頭部企業(yè)或研發(fā)機(jī)構(gòu)主導(dǎo)。如谷歌、微軟、Meta、OpenAI、DeepMind、?;A(chǔ)層的產(chǎn)品形態(tài)主要包括兩種:一種為通過(guò)受控的api接口收取調(diào)用費(fèi);另一種為基于基礎(chǔ)設(shè)施開發(fā)專業(yè)的軟件平臺(tái)收取費(fèi)用。2、中間層(2B)該層與基礎(chǔ)層的特別主要區(qū)別在于,中間層不具備開發(fā)大模型的能力,但是可基于開源大模型等開源技術(shù)進(jìn)行改進(jìn)、抽取或模型二次開發(fā)。該層為在大模型的基礎(chǔ)上開發(fā)的場(chǎng)景化、垂直化、定制化的應(yīng)用模型或工具。在AIGC的應(yīng)用場(chǎng)景中基于大模型抽取出個(gè)性化、定制化的應(yīng)用模型或工具滿足行業(yè)需求。如基于開源的StableDiffusion大模型所開發(fā)的二次元風(fēng)格圖像生成器,滿足特定行業(yè)場(chǎng)景需求。中間層的產(chǎn)品形態(tài)、商業(yè)模式與基礎(chǔ)層保持一致,分別為接口調(diào)用費(fèi)與平臺(tái)軟件費(fèi)。3、應(yīng)用層(2C)應(yīng)用層主要基于基礎(chǔ)層與中間層開發(fā),面向C端的場(chǎng)景化工具或軟件產(chǎn)品。應(yīng)用層更加關(guān)注用戶的需求,將AIGC技術(shù)切實(shí)融入用戶需求,實(shí)現(xiàn)不同形態(tài)、不同功能的產(chǎn)品落地??梢酝ㄟ^(guò)網(wǎng)頁(yè)、小程序、群聊、app等不同的載體呈現(xiàn)。1955年末,NEWELL和SIMON做了一個(gè)名為"邏輯行家"(LOGIC THEORIST)的程序.龍巖什么是AIGC弊端

龍巖什么是AIGC弊端,AIGC

    AIGC助力內(nèi)容分發(fā),緩解人類壓力在內(nèi)容分發(fā)環(huán)節(jié),AI除了常見(jiàn)的個(gè)性化內(nèi)容推薦外,也在逐步開拓全新應(yīng)用場(chǎng)景,如虛擬人主播,以視頻或直播的形式發(fā)放內(nèi)容,打造沉浸式體驗(yàn)。如新華社數(shù)字記者“小諍”、央視網(wǎng)虛擬主播“小C”、阿里巴巴數(shù)字人“冬冬”、百度智能云AI手語(yǔ)主播等等,在未來(lái),AI虛擬主播可能發(fā)展成媒體行業(yè)的標(biāo)配。2、AIGC+電商行業(yè)自網(wǎng)絡(luò)電商出現(xiàn)以來(lái),社會(huì)的很多方面都被改變了,電商企業(yè)既是網(wǎng)絡(luò)時(shí)代的受益者,也在推動(dòng)社會(huì)發(fā)展進(jìn)程中扮演關(guān)鍵角色。自十年前網(wǎng)絡(luò)直播出現(xiàn),帶動(dòng)帶貨模式變革以來(lái),各大企業(yè)都在或多或少的面臨轉(zhuǎn)型問(wèn)題。在數(shù)字世界和物理世界快速融合的當(dāng)下,AIGC走在時(shí)代前沿,可以賦能電商行業(yè)的多個(gè)領(lǐng)域,可能帶來(lái)新一輪的行業(yè)變革。、AIGC助力商品建模,改善購(gòu)物體驗(yàn)對(duì)比傳統(tǒng)的購(gòu)物模式,網(wǎng)購(gòu)的一個(gè)典型問(wèn)題在于只能通過(guò)圖片了解商品,難以觀察到全貌,也讓以次充好的不法商家有機(jī)可乘。而AIGC技術(shù)可以通過(guò)視覺(jué)算法生成商品的三維模型,提供多方位視覺(jué)體驗(yàn),節(jié)省溝通成本,改善用戶體驗(yàn),促成用戶成交與轉(zhuǎn)化。除了三維建模,AIGC還有更高級(jí)的應(yīng)用方式,如阿里巴巴的每平每屋業(yè)務(wù)就利用AIGC技術(shù),實(shí)現(xiàn)線上“商品放家中”的模擬展示效果。 龍巖公司AIGC為什么重要盡管經(jīng)歷了這些受挫的事件,AI仍在慢慢恢復(fù)發(fā)展.新的技術(shù)在日本被開發(fā)出來(lái),如在美國(guó)原創(chuàng)的模糊邏輯。

龍巖什么是AIGC弊端,AIGC

    AIGC在電商行業(yè)應(yīng)用在商品展示環(huán)節(jié):AIGC生成3D模型用于商品展示和虛擬適用,提升線上購(gòu)物體驗(yàn);在主播打造環(huán)節(jié):打造虛擬主播,賦能直播帶貨;在交易場(chǎng)景環(huán)節(jié):虛擬商城構(gòu)建,智能聊天機(jī)器人,賦能線上和線下秀場(chǎng)加速演變,為消費(fèi)者提供全新的購(gòu)物場(chǎng)景。4、AIGC在娛樂(lè)行業(yè)應(yīng)用全員娛樂(lè):在圖像內(nèi)容生成應(yīng)用(人臉美妝、融合;黑白圖像上色、圖像風(fēng)格轉(zhuǎn)換、人像屬性變換)社交互動(dòng):虛擬主播、虛擬網(wǎng)紅、聊天機(jī)器人、聊天互動(dòng)游戲。5、AIGC在其他行業(yè)應(yīng)用在教育行業(yè):AIGC為教育工作者提供了豐富的教學(xué)工作與內(nèi)容素材。比如,在通過(guò)數(shù)字人生成技術(shù),可對(duì)歷史人物進(jìn)行生成并與之對(duì)話,提升課堂互動(dòng)。再比如,通過(guò)ChatGPT生成創(chuàng)意性教學(xué)方案,提供更加普遍的授課思路。在工業(yè)行業(yè):將AIGC技術(shù)融合工業(yè)設(shè)計(jì)軟件CAD,Solidworks中,通過(guò)文本輸入提示語(yǔ)生成,特定樣式的機(jī)構(gòu)模型供設(shè)計(jì)者參考。比如“設(shè)計(jì)一款衛(wèi)星太陽(yáng)能電池板可伸縮折翼機(jī)構(gòu)”通過(guò)AIGC模型生成3D設(shè)計(jì)機(jī)構(gòu)。AIGC在內(nèi)容生成行業(yè)的突破,將提升內(nèi)容創(chuàng)作者,設(shè)計(jì)師,工程師,教育工作者等各行業(yè)人員工作效率與質(zhì)量。同時(shí),將加速企業(yè)數(shù)字化與智能化進(jìn)程。

    AIGC推動(dòng)創(chuàng)意落地,突破表達(dá)瓶頸雖然AI能幫助人類更好的釋放創(chuàng)意,但從劇本到熒幕仍是一段漫長(zhǎng)的距離。從創(chuàng)意到表達(dá)的跨越,AI可以保駕護(hù)航,幫助人類化不可能為可能。舉例來(lái)說(shuō),當(dāng)前勞動(dòng)密集型的影視生產(chǎn)方式難以滿足觀眾對(duì)質(zhì)量日益提高的要求。2009年上映的《阿凡達(dá)》令全球觀眾旗艦了解3D電影的魅力,此后沉浸式觀影體驗(yàn)成了影視產(chǎn)業(yè)鏈上共同的追求。為了滿足這種追求,影視特技與應(yīng)用呈現(xiàn)井噴式發(fā)展,但后期制作與渲染,復(fù)雜程度也都水漲船高,傳統(tǒng)的作業(yè)方式已經(jīng)難以為繼,而AI技術(shù)就有推動(dòng)變革的潛力。從技術(shù)角度來(lái)說(shuō),影視特技行業(yè)的作業(yè)流程是極為繁瑣的,比如場(chǎng)景中的建模就需要從一草一木、一人一物開始,逐漸打造世界的雛形,再通過(guò)骨骼綁定和動(dòng)作設(shè)計(jì)讓模型活起來(lái),之后的定分鏡、調(diào)燈光、鋪軌道、取鏡頭等等無(wú)不費(fèi)時(shí)費(fèi)力,后期的解算和渲染等工作同樣如此??梢哉f(shuō)在影視工作的每個(gè)環(huán)節(jié)都有大量重復(fù)性工作或等待時(shí)間,無(wú)形中拖慢了工作節(jié)奏。因此現(xiàn)在就有企業(yè)致力于解封流程生產(chǎn)力,比如優(yōu)酷的“妙嘆”工具箱,在動(dòng)漫中實(shí)時(shí)渲染,幫助工作者實(shí)時(shí)把握效果或做出修改,節(jié)省了大量成本,減輕人員負(fù)擔(dān),目前已被多家國(guó)漫企業(yè)采用。 霍金斯認(rèn)為,從人工智能到神經(jīng)網(wǎng)絡(luò),早先復(fù)制人類智能的努力無(wú)一成功,究其原因。

龍巖什么是AIGC弊端,AIGC

    ChatGPTChatGPT是美國(guó)OpenAI公司在2022年11月發(fā)布的智能對(duì)話模型。截止目前ChatGPT未公開論文等技術(shù)資料。大多數(shù)的技術(shù)原理分析是基于InstructGPT分析。ChatGPT與GPT-3等對(duì)話模型不同的是,ChatGPT引入了人類反饋強(qiáng)化學(xué)習(xí)(HFRL:HumanFeedbackReinforcementLearning)。ChatGPT與強(qiáng)化學(xué)習(xí):強(qiáng)化學(xué)習(xí)策略在AlphaGo中已經(jīng)展現(xiàn)出其強(qiáng)大學(xué)習(xí)能力。簡(jiǎn)單的說(shuō),ChatGPT通過(guò)HFRL來(lái)學(xué)習(xí)什么是好的回答,而不是通過(guò)有監(jiān)督的問(wèn)題-答案式的訓(xùn)練直接給出結(jié)果。通過(guò)HFRL,ChatGPT能夠模仿人類的思維方式,回答的問(wèn)題更符合人類對(duì)話。ChatGPT原理:舉個(gè)簡(jiǎn)單的例子進(jìn)行說(shuō)明,公司員工收到領(lǐng)導(dǎo)安排任務(wù),需完成一項(xiàng)工作匯報(bào)的PPT。當(dāng)員工完成工作PPT制作時(shí),去找領(lǐng)導(dǎo)匯報(bào),領(lǐng)導(dǎo)在看后認(rèn)為不合格,但是沒(méi)有清楚的指出問(wèn)題在哪。員工在收到反饋后,不斷思考,從領(lǐng)導(dǎo)的思維方式出發(fā),重新修改PPT,提交領(lǐng)導(dǎo)查看。通過(guò)以上多輪反饋-修改后,員工在PPT制作上會(huì)更符合領(lǐng)導(dǎo)思維方式。而如果領(lǐng)導(dǎo)在旗艦次查看時(shí),直接告訴員工哪里有問(wèn)題,該怎樣修改。 我們?nèi)绾尾拍苤圃斐稣嬲饬x上的智能機(jī)器——這樣的智能機(jī)器將不再只是對(duì)人類大腦的簡(jiǎn)單模仿。南平科技AIGC是什么

它應(yīng)該像大腦一樣運(yùn)轉(zhuǎn)?它是否需要軀體?龍巖什么是AIGC弊端

    VisionTransformer(ViT)2020年由谷歌團(tuán)隊(duì)提出,將Transformer應(yīng)用至圖像分類任務(wù),此后Transformer開始在CV領(lǐng)域大放異彩。ViT將圖片分為14*14的patch,并對(duì)每個(gè)patch進(jìn)行線性變換得到固定長(zhǎng)度的向量送入Transformer,后續(xù)與標(biāo)準(zhǔn)的Transformer處理方式相同。以ViT為基礎(chǔ)衍生出了多重精良模型,如SwinTransformer,ViTAETransformer等。ViT通過(guò)將人類先驗(yàn)經(jīng)驗(yàn)知識(shí)引入網(wǎng)絡(luò)結(jié)構(gòu)設(shè)計(jì),獲得了更快的收斂速度、更低的計(jì)算代價(jià)、更多的特征尺度、更強(qiáng)的泛化能力,能夠更好地學(xué)習(xí)和編碼數(shù)據(jù)中蘊(yùn)含的知識(shí),正在成為視覺(jué)領(lǐng)域的基礎(chǔ)網(wǎng)絡(luò)架構(gòu)。以ViT為代替的視覺(jué)大模型賦予了AI感知、理解視覺(jué)數(shù)據(jù)的能力,助力AIGC發(fā)展。2、預(yù)訓(xùn)練大模型雖然過(guò)去各種模型層出不窮,但是生成的內(nèi)容偏簡(jiǎn)單且質(zhì)量不高,遠(yuǎn)不能夠滿足現(xiàn)實(shí)場(chǎng)景中靈活多變以高質(zhì)量?jī)?nèi)容生成的要求。預(yù)訓(xùn)練大模型的出現(xiàn)使AIGC發(fā)生質(zhì)變,諸多問(wèn)題得以解決。大模型在CV/NLP/多模態(tài)領(lǐng)域成果頗豐,并如下表的經(jīng)典模型。 龍巖什么是AIGC弊端