防水透氣膜涉及哪些領(lǐng)域?
防水透聲膜的工作原理
VariCut攜手SAP——解鎖威侃快速成長(zhǎng)活動(dòng)
威碼標(biāo)簽打印機(jī) GT2000,助力電力電信行業(yè)
威碼標(biāo)簽機(jī)走進(jìn)上海交大,共同推進(jìn)親踐式課題研究~
換季啦,號(hào)稱(chēng)多面手的媽媽們竟然憑借一枚小標(biāo)簽搞定家庭收納
出游季,行李箱雜而不亂的致勝法寶,威碼標(biāo)簽打印機(jī)GT600
威碼標(biāo)簽打印機(jī)亮相上海第十七屆EPOWER中國(guó)全電展
電子傳感器在透氣膜中的使用
防水透氣膜在醫(yī)療中的使用
ChatGPTChatGPT是美國(guó)OpenAI公司在2022年11月發(fā)布的智能對(duì)話模型。截止目前ChatGPT未公開(kāi)論文等技術(shù)資料。大多數(shù)的技術(shù)原理分析是基于InstructGPT分析。ChatGPT與GPT-3等對(duì)話模型不同的是,ChatGPT引入了人類(lèi)反饋強(qiáng)化學(xué)習(xí)(HFRL:HumanFeedbackReinforcementLearning)。ChatGPT與強(qiáng)化學(xué)習(xí):強(qiáng)化學(xué)習(xí)策略在AlphaGo中已經(jīng)展現(xiàn)出其強(qiáng)大學(xué)習(xí)能力。簡(jiǎn)單的說(shuō),ChatGPT通過(guò)HFRL來(lái)學(xué)習(xí)什么是好的回答,而不是通過(guò)有監(jiān)督的問(wèn)題-答案式的訓(xùn)練直接給出結(jié)果。通過(guò)HFRL,ChatGPT能夠模仿人類(lèi)的思維方式,回答的問(wèn)題更符合人類(lèi)對(duì)話。ChatGPT原理:舉個(gè)簡(jiǎn)單的例子進(jìn)行說(shuō)明,公司員工收到領(lǐng)導(dǎo)安排任務(wù),需完成一項(xiàng)工作匯報(bào)的PPT。當(dāng)員工完成工作PPT制作時(shí),去找領(lǐng)導(dǎo)匯報(bào),領(lǐng)導(dǎo)在看后認(rèn)為不合格,但是沒(méi)有清楚的指出問(wèn)題在哪。員工在收到反饋后,不斷思考,從領(lǐng)導(dǎo)的思維方式出發(fā),重新修改PPT,提交領(lǐng)導(dǎo)查看。通過(guò)以上多輪反饋-修改后,員工在PPT制作上會(huì)更符合領(lǐng)導(dǎo)思維方式。而如果領(lǐng)導(dǎo)在旗艦次查看時(shí),直接告訴員工哪里有問(wèn)題,該怎樣修改。 《人工智能的未來(lái)》:詮釋了智能的內(nèi)涵,闡述了大腦工作的原理。南平bilibiliAIGC用處
應(yīng)用:在擴(kuò)散模型(diffusionmodel)的基礎(chǔ)上產(chǎn)生了多種令人印象深刻的應(yīng)用,比如:圖像超分、圖像上色、文本生成圖片、全景圖像生成等。如下圖,中間圖像作為輸入,基于擴(kuò)散模型,生成左右視角兩張圖,輸入圖像與生成圖像共同拼接程一張全景圖像。生成全景圖像產(chǎn)品與模型:在擴(kuò)散模型的基礎(chǔ)上,各公司與研究機(jī)構(gòu)開(kāi)發(fā)出的代替產(chǎn)品如下:DALL-E2(OpenAI文本生成圖像,圖像生成圖像)DALL-E2由美國(guó)OpenAI公司在2022年4月發(fā)布,并在2022年9月28日,在OpenAI網(wǎng)站向公眾開(kāi)放,提供數(shù)量有限的無(wú)償圖像和額外的購(gòu)買(mǎi)圖像服務(wù)。Imagen(GoogleResearch文本生成圖像)Imagen是2022年5月谷歌發(fā)布的文本到圖像的擴(kuò)散模型,該模型目前不對(duì)外開(kāi)放。用戶(hù)可通過(guò)輸入描述性文本,生成圖文匹配的圖像。StableDiffusion(StabilityAI文本生成圖像,代碼與模型開(kāi)源)2022年8月,StabilityAI發(fā)布了StableDiffusion,這是一種類(lèi)似于DALL-E2與Imagen的開(kāi)源Diffusion模型,代碼與模型權(quán)重均向公眾開(kāi)放。(4)Transformer2017年由谷歌提出,采用注意力機(jī)制(attention)對(duì)輸入數(shù)據(jù)重要性的不同而分配不同權(quán)重,其并行化處理的優(yōu)勢(shì)能夠使其在更大的數(shù)據(jù)集訓(xùn)練,加速了GPT等預(yù)訓(xùn)練大模型的發(fā)展。 三明互聯(lián)網(wǎng)AIGC前景它將每個(gè)問(wèn)題都表示成一個(gè)樹(shù)形模型,然后選擇可能得到正確結(jié)論的那一枝來(lái)求解。
在自然語(yǔ)言處理技術(shù)發(fā)展之前,人類(lèi)只能通過(guò)一些固定模式的指令來(lái)與計(jì)算機(jī)進(jìn)行溝通,這對(duì)于人工智能的發(fā)展是一個(gè)重大的突破。自然語(yǔ)言處理技術(shù)可以追溯到1950年,當(dāng)時(shí)圖靈發(fā)表了一篇論文,提出了「圖靈測(cè)試」的概念作為判斷智能的條件。這一測(cè)試包含了自動(dòng)語(yǔ)意翻譯和自然語(yǔ)言生成。自然語(yǔ)言處理技術(shù)可以分為兩個(gè)中心任務(wù):自動(dòng)語(yǔ)音識(shí)別和自然語(yǔ)言生成。自動(dòng)語(yǔ)音識(shí)別是將語(yǔ)音信號(hào)轉(zhuǎn)換為文字,而自然語(yǔ)言生成則是將結(jié)構(gòu)化數(shù)據(jù)轉(zhuǎn)換為自然語(yǔ)言文本。隨著AI技術(shù)的不斷發(fā)展,人工智能已經(jīng)可以通過(guò)自然語(yǔ)言處理技術(shù)和擴(kuò)散模型(DiffusionModel)來(lái)生成自然語(yǔ)言文本,這使得人工智能不再作為內(nèi)容創(chuàng)造的輔助工具,而是可以創(chuàng)造生成內(nèi)容。這種生成式人工智能可以用于自然語(yǔ)言對(duì)答、機(jī)器翻譯、自然語(yǔ)言摘要、聊天機(jī)器人等多個(gè)領(lǐng)域,為人們提供更加智能化的服務(wù)和體驗(yàn)??傊S著自然語(yǔ)言處理技術(shù)和擴(kuò)散模型的發(fā)展,人工智能已經(jīng)可以創(chuàng)造生成自然語(yǔ)言文本,這將會(huì)給我們的生活和工作帶來(lái)巨大的變革。
人工智能學(xué)科研究的主要內(nèi)容包括:知識(shí)表示、自動(dòng)推理和搜索方法、機(jī)器學(xué)習(xí)和知識(shí)獲取、知識(shí)處理系統(tǒng)、自然語(yǔ)言理解、計(jì)算機(jī)視覺(jué)、智能機(jī)器人、自動(dòng)程序設(shè)計(jì)等方面。研究方法如今沒(méi)有統(tǒng)一的原理或范式指導(dǎo)人工智能研究。許多問(wèn)題上研究者都存在爭(zhēng)論。其中幾個(gè)長(zhǎng)久以來(lái)仍沒(méi)有結(jié)論的問(wèn)題是:是否應(yīng)從心理或神經(jīng)方面模擬人工智能?或者像鳥(niǎo)類(lèi)生物學(xué)對(duì)于航空工程一樣,人類(lèi)生物學(xué)對(duì)于人工智能研究是沒(méi)有關(guān)系的?智能行為能否用簡(jiǎn)單的原則(如邏輯或優(yōu)化)來(lái)描述?還是必須解決大量完全無(wú)關(guān)的問(wèn)題?智能是否可以使用高級(jí)符號(hào)表達(dá),如詞和想法?還是需要“子符號(hào)”的處理?JOHNHAUGELAND提出了GOFAI(出色的老式人工智能)的概念,也提議人工智能應(yīng)歸類(lèi)為SYNTHETICINTELLIGENCE,這個(gè)概念后來(lái)被某些非GOFAI研究者采納。 霍金斯認(rèn)為,從人工智能到神經(jīng)網(wǎng)絡(luò),早先復(fù)制人類(lèi)智能的努力無(wú)一成功,究其原因。
ai是ArtificialIntelligence的縮寫(xiě),指的是人工智能;人工智能是研究、開(kāi)發(fā)用于模擬、延伸和擴(kuò)展人的智能的理論、方法、技術(shù)及應(yīng)用系統(tǒng)的一門(mén)新的技術(shù)科學(xué);人工智能研究的一個(gè)主要目標(biāo)是使機(jī)器能夠勝任一些通常需要人類(lèi)智能才能完成的復(fù)雜工作。ai是什么?ai是指人工智能(ArtificialIntelligence)。人工智能(ArtificialIntelligence),英文縮寫(xiě)為AI。它是研究、開(kāi)發(fā)用于模擬、延伸和擴(kuò)展人的智能的理論、方法、技術(shù)及應(yīng)用系統(tǒng)的一門(mén)新的技術(shù)科學(xué)。人工智能是計(jì)算機(jī)科學(xué)的一個(gè)分支,它企圖了解智能的實(shí)質(zhì),并生產(chǎn)出一種新的能以人類(lèi)智能相似的方式做出反應(yīng)的智能機(jī)器,該領(lǐng)域的研究包括機(jī)器人、語(yǔ)言識(shí)別、圖像識(shí)別、自然語(yǔ)言處理和行家系統(tǒng)等。人工智能從誕生以來(lái),理論和技術(shù)日益成熟,應(yīng)用領(lǐng)域也不斷擴(kuò)大,可以設(shè)想,未來(lái)人工智能帶來(lái)的科技產(chǎn)品,將會(huì)是人類(lèi)智慧的“容器”。人工智能可以對(duì)人的意識(shí)、思維的信息過(guò)程的模擬。人工智能不是人的智能,但能像人那樣思考、也可能超過(guò)人的智能。人工智能是一門(mén)極富挑戰(zhàn)性的科學(xué),從事這項(xiàng)工作的人必須懂得計(jì)算機(jī)知識(shí),心理學(xué)和哲學(xué)。人工智能是包括十分普遍的科學(xué),它由不同的領(lǐng)域組成,如機(jī)器學(xué)習(xí),計(jì)算機(jī)視覺(jué)等等。 機(jī)器真的可以思考嗎?人的思維只是一個(gè)復(fù)雜的計(jì)算機(jī)程序嗎?泉州大廠AIGC用處
NORBERT WIENER是期初研究反饋理論的美國(guó)人之一。南平bilibiliAIGC用處
AIGC+資訊行業(yè)在信息化時(shí)代,社會(huì)中充斥著各種資訊,同時(shí)這些資訊也有高標(biāo)準(zhǔn)、需求大、時(shí)效強(qiáng)等特點(diǎn)。自2014年起,AIGC已開(kāi)始用于新聞資訊領(lǐng)域,因此資訊行業(yè)是AIGC商業(yè)化相對(duì)成熟的賽道。、AIGC輔助信息收集,打造堅(jiān)實(shí)基礎(chǔ)精良的新聞產(chǎn)出必定需要全部、高效、準(zhǔn)確的信息收集與整理的基礎(chǔ)上。按照傳統(tǒng)的業(yè)模式,工作人員需要親臨現(xiàn)場(chǎng),通過(guò)各種手段才能獲得足夠且扎實(shí)的信息。現(xiàn)在的AI已經(jīng)能對(duì)該環(huán)節(jié)高效賦能,例如科大訊飛的AI轉(zhuǎn)寫(xiě)工具可以幫助記者實(shí)時(shí)生成文稿,自動(dòng)撰寫(xiě)提綱、精簡(jiǎn)語(yǔ)句等,進(jìn)而提高工作效率,保證特別終產(chǎn)出的時(shí)效性。除幫助獲取一手信息外,AI也可以幫助精確檢索二手信息,收集素材。在高性能的AIGC工具如ChatGPT出現(xiàn)后,就可以像常人對(duì)話一樣直接提問(wèn)并獲得答案。雖然難免還是會(huì)有這樣那樣的問(wèn)題,但作為工具而言,AIGC的意義已經(jīng)非常明顯了。、AIGC支持資訊生成,實(shí)現(xiàn)高效產(chǎn)出在資訊寫(xiě)作等生成環(huán)節(jié),基于自然語(yǔ)言生成和自然語(yǔ)言處理技術(shù),AIGC已經(jīng)逐步得到從業(yè)者和消費(fèi)者的認(rèn)可,因此有不少企業(yè)積極參與其中。以產(chǎn)出數(shù)量為例,雅虎等外媒合作的AutomatedInsights,其撰稿工具Wordsmith能在一分鐘內(nèi)生成兩千條新聞。 南平bilibiliAIGC用處