三明bilibiliAIGC運(yùn)營

來源: 發(fā)布時(shí)間:2024-01-03

    應(yīng)用:在擴(kuò)散模型(diffusionmodel)的基礎(chǔ)上產(chǎn)生了多種令人印象深刻的應(yīng)用,比如:圖像超分、圖像上色、文本生成圖片、全景圖像生成等。如下圖,中間圖像作為輸入,基于擴(kuò)散模型,生成左右視角兩張圖,輸入圖像與生成圖像共同拼接程一張全景圖像。生成全景圖像產(chǎn)品與模型:在擴(kuò)散模型的基礎(chǔ)上,各公司與研究機(jī)構(gòu)開發(fā)出的代替產(chǎn)品如下:DALL-E2(OpenAI文本生成圖像,圖像生成圖像)DALL-E2由美國OpenAI公司在2022年4月發(fā)布,并在2022年9月28日,在OpenAI網(wǎng)站向公眾開放,提供數(shù)量有限的無償圖像和額外的購買圖像服務(wù)。Imagen(GoogleResearch文本生成圖像)Imagen是2022年5月谷歌發(fā)布的文本到圖像的擴(kuò)散模型,該模型目前不對外開放。用戶可通過輸入描述性文本,生成圖文匹配的圖像。StableDiffusion(StabilityAI文本生成圖像,代碼與模型開源)2022年8月,StabilityAI發(fā)布了StableDiffusion,這是一種類似于DALL-E2與Imagen的開源Diffusion模型,代碼與模型權(quán)重均向公眾開放。(4)Transformer2017年由谷歌提出,采用注意力機(jī)制(attention)對輸入數(shù)據(jù)重要性的不同而分配不同權(quán)重,其并行化處理的優(yōu)勢能夠使其在更大的數(shù)據(jù)集訓(xùn)練,加速了GPT等預(yù)訓(xùn)練大模型的發(fā)展。 到1985年美國有一百多個(gè)公司生產(chǎn)機(jī)器視覺系統(tǒng),銷售額共達(dá)8千萬美元.三明bilibiliAIGC運(yùn)營

三明bilibiliAIGC運(yùn)營,AIGC

    視頻生成視頻生成與圖像生成在原理上相似,主要分為視頻編輯與視頻自主生成。視頻編輯可應(yīng)用于視頻超分(視頻畫質(zhì)增強(qiáng))、視頻修復(fù)(老電影上色、畫質(zhì)修復(fù))、視頻畫面剪輯(識(shí)別畫面內(nèi)容,自動(dòng)場景剪輯)。視頻自主生成可應(yīng)用于圖像生成視頻(給定參照圖像,生成一段運(yùn)動(dòng)視頻)、文本生成視頻(給定一段描述性文字,生成內(nèi)容相符視頻)?!敬硇援a(chǎn)品或模型】:Deepfake,videoGPT,Gliacloud、Make-A-Video、Imagenvideo等。5、多模態(tài)生成以上四種模態(tài)可以進(jìn)行組合搭配,進(jìn)行模態(tài)間轉(zhuǎn)換生成。如文本生成圖像(AI繪畫、根據(jù)prompt提示語生成特定風(fēng)格圖像)、文本生成音頻(AI作曲、根據(jù)prompt提示語生成特定場景音頻)、文本生成視頻(AI視頻制作、根據(jù)一段描述性文本生成語義內(nèi)容相符視頻片段)、圖像生成文本(根據(jù)圖像生成標(biāo)題、根據(jù)圖像生成故事)、圖像生成視頻。【代表性產(chǎn)品或模型】:DALL-E、MidJourney、StableDiffusion等。 寧德互聯(lián)網(wǎng)AIGC好處它應(yīng)該像大腦一樣運(yùn)轉(zhuǎn)?它是否需要軀體?

三明bilibiliAIGC運(yùn)營,AIGC

    AIGC助力內(nèi)容分發(fā),緩解人類壓力在內(nèi)容分發(fā)環(huán)節(jié),AI除了常見的個(gè)性化內(nèi)容推薦外,也在逐步開拓全新應(yīng)用場景,如虛擬人主播,以視頻或直播的形式發(fā)放內(nèi)容,打造沉浸式體驗(yàn)。如新華社數(shù)字記者“小諍”、央視網(wǎng)虛擬主播“小C”、阿里巴巴數(shù)字人“冬冬”、百度智能云AI手語主播等等,在未來,AI虛擬主播可能發(fā)展成媒體行業(yè)的標(biāo)配。2、AIGC+電商行業(yè)自網(wǎng)絡(luò)電商出現(xiàn)以來,社會(huì)的很多方面都被改變了,電商企業(yè)既是網(wǎng)絡(luò)時(shí)代的受益者,也在推動(dòng)社會(huì)發(fā)展進(jìn)程中扮演關(guān)鍵角色。自十年前網(wǎng)絡(luò)直播出現(xiàn),帶動(dòng)帶貨模式變革以來,各大企業(yè)都在或多或少的面臨轉(zhuǎn)型問題。在數(shù)字世界和物理世界快速融合的當(dāng)下,AIGC走在時(shí)代前沿,可以賦能電商行業(yè)的多個(gè)領(lǐng)域,可能帶來新一輪的行業(yè)變革。、AIGC助力商品建模,改善購物體驗(yàn)對比傳統(tǒng)的購物模式,網(wǎng)購的一個(gè)典型問題在于只能通過圖片了解商品,難以觀察到全貌,也讓以次充好的不法商家有機(jī)可乘。而AIGC技術(shù)可以通過視覺算法生成商品的三維模型,提供多方位視覺體驗(yàn),節(jié)省溝通成本,改善用戶體驗(yàn),促成用戶成交與轉(zhuǎn)化。除了三維建模,AIGC還有更高級(jí)的應(yīng)用方式,如阿里巴巴的每平每屋業(yè)務(wù)就利用AIGC技術(shù),實(shí)現(xiàn)線上“商品放家中”的模擬展示效果。

    1956年夏季,以麥卡賽、明斯基、羅切斯特和申農(nóng)等為首的一批有遠(yuǎn)見卓識(shí)的年輕科學(xué)家在一起聚會(huì),共同研究和探討用機(jī)器模擬智能的一系列有關(guān)問題,并提出了“人工智能”這一術(shù)語,它標(biāo)志著“人工智能”這門新興學(xué)科的正式誕生。IBM公司“深藍(lán)”電腦擊敗了人類的世界國際象棋旗艦更是人工智能技術(shù)的一個(gè)完美表現(xiàn)。從1956年正式提出人工智能學(xué)科算起,50多年來,取得長足的發(fā)展,成為一門普遍的交叉和前沿科學(xué)??偟恼f來,人工智能的目的就是讓計(jì)算機(jī)這臺(tái)機(jī)器能夠像人一樣思考。如果希望做出一臺(tái)能夠思考的機(jī)器,那就必須知道什么是思考,更進(jìn)一步講就是什么是智慧。什么樣的機(jī)器才是智慧的呢?科學(xué)家已經(jīng)作出了汽車、火車、飛機(jī)和收音機(jī)等等,它們模仿我們身體感官的功能,但是能不能模仿人類大腦的功能呢?我們也只知道這個(gè)裝在我們天靈蓋里面的東西是由數(shù)十億個(gè)神經(jīng)細(xì)胞組成的感官,我們對這個(gè)東西知之甚少,模仿它或許是天下困難的事情了。當(dāng)計(jì)算機(jī)出現(xiàn)后,人類開始真正有了一個(gè)可以模擬人類思維的工具,在以后的歲月中,無數(shù)科學(xué)家為這個(gè)目標(biāo)努力著。 但80年代對AI工業(yè)來說也不全是好年景.86-87年對AI系統(tǒng)的需求下降,業(yè)界損失了近5億美元.

三明bilibiliAIGC運(yùn)營,AIGC

    一.AIGC是什么?AIGC(即ArtificialIntelligenceGeneratedContent),中文譯為人工智能生成內(nèi)容。簡單來說,就是以前本來需要人類用思考和創(chuàng)造力才能完成的工作,現(xiàn)在可以利用人工智能技術(shù)來替代我們完成。在狹義上,AIGC是指利用AI自動(dòng)生成內(nèi)容的生產(chǎn)方式,比如自動(dòng)寫作、自動(dòng)設(shè)計(jì)等。在廣義上,AIGC是指像人類一樣具備生成創(chuàng)造能力的AI技術(shù),它可以基于訓(xùn)練數(shù)據(jù)和生成算法模型,自主生成創(chuàng)造新的文本、圖像、音樂、視頻、3D交互內(nèi)容等各種形式的內(nèi)容和數(shù)據(jù)。二.AIGC發(fā)展歷史AIGC的發(fā)展歷程可以分成三個(gè)階段:早期萌芽階段(上世紀(jì)50年代至90年代中期),沉淀累積階段(上世紀(jì)90年代至本世紀(jì)10年代中期),快速發(fā)展階段(本世紀(jì)10年代中期至今)。在早期萌芽階段(1950s~1990s)由于技術(shù)限制,AIGC有限于小范圍實(shí)驗(yàn)和應(yīng)用,例如1957年出現(xiàn)了首支電腦創(chuàng)作的音樂作品《依利亞克組曲(IlliacSuite)》。然而在80年代末至90年代中期,由于高成本和難以商業(yè)化,AIGC的資本投入有限,因此未能取得許多斐然進(jìn)展。作者:HOTAIGC鏈接:源:簡書著作權(quán)歸作者所有。商業(yè)轉(zhuǎn)載請聯(lián)系作者獲得授權(quán),非商業(yè)轉(zhuǎn)載請注明出處。 1955年末,NEWELL和SIMON做了一個(gè)名為"邏輯行家"(LOGIC THEORIST)的程序.寧德互聯(lián)網(wǎng)AIGC用處

從圖靈影響深遠(yuǎn)的奠基性研究到機(jī)器人和新人工智能的飛躍。三明bilibiliAIGC運(yùn)營

    計(jì)算智能80年代中DAVIDRUMELHART等再次提出神經(jīng)網(wǎng)絡(luò)和聯(lián)結(jié)主義.這和其他的子符號(hào)方法,如模糊控制和進(jìn)化計(jì)算,都屬于計(jì)算智能學(xué)科研究范疇。統(tǒng)計(jì)學(xué)法90年代,人工智能研究發(fā)展出復(fù)雜的數(shù)學(xué)工具來解決特定的分支問題。這些工具是真正的科學(xué)方法,即這些方法的結(jié)果是可測量的和可驗(yàn)證的,同時(shí)也是人工智能成功的原因。共用的數(shù)學(xué)語言也允許已有學(xué)科的合作(如數(shù)學(xué),經(jīng)濟(jì)或運(yùn)籌學(xué))?!案镄隆焙汀癗EATS的成功”。有人批評(píng)這些技術(shù)太專注于特定的問題,而沒有考慮長遠(yuǎn)的強(qiáng)人工智能目標(biāo)。集成方法智能AGENT范式智能AGENT是一個(gè)會(huì)感知環(huán)境并作出行動(dòng)以達(dá)致目標(biāo)的系統(tǒng)。 三明bilibiliAIGC運(yùn)營