龍巖bilibiliAIGC怎么樣

來源: 發(fā)布時(shí)間:2024-01-29

    智能數(shù)字內(nèi)容編輯:智能數(shù)字內(nèi)容編輯通過對(duì)內(nèi)容的理解以及屬性控制,進(jìn)而實(shí)現(xiàn)對(duì)內(nèi)容的修改。如在計(jì)算機(jī)視覺領(lǐng)域,通過對(duì)視頻內(nèi)容的理解實(shí)現(xiàn)不同場(chǎng)景視頻片段的剪輯。通過人體部位檢測(cè)以及目標(biāo)衣服的變形控制與截?cái)嗵幚?,將目?biāo)衣服覆蓋至人體部位,實(shí)現(xiàn)虛擬試衣。在語(yǔ)音信號(hào)處理領(lǐng)域,通過對(duì)音頻信號(hào)分析,實(shí)現(xiàn)人聲與背景聲分離。以上三個(gè)例子均在理解數(shù)字內(nèi)容的基礎(chǔ)上對(duì)內(nèi)容的編輯與控制?!緫?yīng)用】:視頻場(chǎng)景剪輯、虛擬試衣、人聲分離等。3、智能數(shù)字內(nèi)容生成:智能數(shù)字內(nèi)容生成通過從海量數(shù)據(jù)中學(xué)習(xí)抽象概念,并通過概念的組合生成全新的內(nèi)容。如AI繪畫,從海量繪畫中學(xué)習(xí)作品不同筆法、內(nèi)容、藝術(shù)風(fēng)格,并基于學(xué)習(xí)內(nèi)容重新生成特定風(fēng)格的繪畫。采用此方式,人工智能在文本創(chuàng)作、音樂創(chuàng)作和詩(shī)詞創(chuàng)作中取得了不錯(cuò)表現(xiàn)。再比如,在跨模態(tài)領(lǐng)域,通過輸入文本輸出特定風(fēng)格與屬性的圖像,不僅能夠描述圖像中主體的數(shù)量、形狀、顏色等屬性信息,而且能夠描述主體的行為、動(dòng)作以及主體之間的關(guān)系。 保證美國(guó)在技術(shù)進(jìn)步上帶領(lǐng)于蘇聯(lián).這個(gè)計(jì)劃吸引了來自全世界的計(jì)算機(jī)科學(xué)家,加快了AI研究的發(fā)展步伐.龍巖bilibiliAIGC怎么樣

龍巖bilibiliAIGC怎么樣,AIGC

    AIGC的中心技術(shù)有哪些?(1)變分自編碼(VariationalAutoencoder,VAE)變分自編碼器是深度生成模型中的一種,由Kingma等人在2014年提出,與傳統(tǒng)的自編碼器通過數(shù)值方式描述潛空間不同,它以概率方式對(duì)潛在空間進(jìn)行觀察,在數(shù)據(jù)生成方面應(yīng)用價(jià)值較高。VAE分為兩部分,編碼器與解碼器。編碼器將原始高維輸入數(shù)據(jù)轉(zhuǎn)換為潛在空間的概率分布描述;解碼器從采樣的數(shù)據(jù)進(jìn)行重建生成新數(shù)據(jù)。VAE模型(2)生成對(duì)抗網(wǎng)絡(luò)(GenerativeAdversarialNetworks,GAN)2014年IanGoodFellow提出了生成對(duì)抗網(wǎng)絡(luò),成為早期出名的生成模型。GAN使用零和博弈策略學(xué)習(xí),在圖像生成中應(yīng)用普遍。以GAN為基礎(chǔ)產(chǎn)生了多種變體,如DCGAN,StytleGAN,CycleGAN等。GAN模型GAN包含兩個(gè)部分:生成器:學(xué)習(xí)生成合理的數(shù)據(jù)。對(duì)于圖像生成來說是給定一個(gè)向量,生成一張圖片。其生成的數(shù)據(jù)作為判別器的負(fù)樣本。判別器:判別輸入是生成數(shù)據(jù)還是真實(shí)數(shù)據(jù)。網(wǎng)絡(luò)輸出越接近于0,生成數(shù)據(jù)可能性越大;反之,真實(shí)數(shù)據(jù)可能性越大。 莆田公司AIGC前景從圖靈影響深遠(yuǎn)的奠基性研究到機(jī)器人和新人工智能的飛躍。

龍巖bilibiliAIGC怎么樣,AIGC

    人工智能技術(shù)的飛速發(fā)展,生成式AI正在改變我們處理信息和解決問題的方式。作為生成式AI的代替,AIGC為眾多企業(yè)帶來了前所未有的價(jià)值。在本文中,我們將探討AIGC如何通過以下10種方式為企業(yè)帶來實(shí)質(zhì)性的幫助。數(shù)據(jù)分析和預(yù)測(cè)AIGC可以利用大數(shù)據(jù)和機(jī)器學(xué)習(xí)算法,幫助企業(yè)進(jìn)行數(shù)據(jù)分析和預(yù)測(cè),從而更好地了解市場(chǎng)趨勢(shì)和客戶需求。例如,在金融行業(yè),AIGC可以分析大量歷史數(shù)據(jù),預(yù)測(cè)股市走向,為投資決策提供有力支持。智能自動(dòng)化AigC可以用于各種任務(wù)的自動(dòng)化,如聊天機(jī)器人、智能客服、智能推薦等,從而提高客戶服務(wù)質(zhì)量和效率。例如,在電商領(lǐng)域,AIGC可以根據(jù)用戶的瀏覽歷史和購(gòu)買記錄,為其推薦相關(guān)產(chǎn)品,提高轉(zhuǎn)化率。決策支持AigC可以為企業(yè)提供決策支持,通過分析大量數(shù)據(jù)和信息,給出比較好解決方案。如在醫(yī)療行業(yè),AIGC可以幫助醫(yī)生診斷疾病、制定醫(yī)療方案,提高醫(yī)療效果和患者滿意度。內(nèi)容創(chuàng)作AIGC可以快速生成各種類型的內(nèi)容,如文章、視頻、圖片等,滿足企業(yè)的營(yíng)銷需求。在廣告行業(yè),AIGC可以根據(jù)目標(biāo)客戶的需求和興趣,創(chuàng)作個(gè)性化的廣告內(nèi)容,提高廣告效果。語(yǔ)言翻譯AigC可以實(shí)現(xiàn)高效、準(zhǔn)確的翻譯服務(wù)。

    實(shí)現(xiàn)方法人工智能在計(jì)算機(jī)上實(shí)現(xiàn)時(shí)有2種不同的方式。一種是采用傳統(tǒng)的編程技術(shù),使系統(tǒng)呈現(xiàn)智能的效果,而不考慮所用方法是否與人或動(dòng)物機(jī)體所用的方法相同。這種方法叫工程學(xué)方法,它已在一些領(lǐng)域內(nèi)作出了成果,如文字識(shí)別、電腦下棋等。另一種是模擬,它不僅要看效果,還要求實(shí)現(xiàn)方法也和人類或生物機(jī)體所用的方法相同或相類似。遺傳算法(GENERICALGORITHM,簡(jiǎn)稱GA)和人工神經(jīng)網(wǎng)絡(luò)(ARTIFICIALNEURALNETWORK,簡(jiǎn)稱ANN)均屬后一類型。遺傳算法模擬人類或生物的遺傳-進(jìn)化機(jī)制,人工神經(jīng)網(wǎng)絡(luò)則是模擬人類或動(dòng)物大腦中神經(jīng)細(xì)胞的活動(dòng)方式。為了得到相同智能效果,兩種方式通常都可使用。采用前一種方法,需要人工詳細(xì)規(guī)定程序邏輯,如果游戲簡(jiǎn)單,還是方便的。如果游戲復(fù)雜,角色數(shù)量和活動(dòng)空間增加,相應(yīng)的邏輯就會(huì)很復(fù)雜(按指數(shù)式增長(zhǎng)),人工編程就非常繁瑣,容易出錯(cuò)。而一旦出錯(cuò),就必須修改原程序,重新編譯、調(diào)試,結(jié)尾為用戶提供一個(gè)新的版本或提供一個(gè)新補(bǔ)丁,非常麻煩。 人工智能技術(shù)接受檢驗(yàn) 在"沙漠風(fēng)暴"行動(dòng)中軍方的智能設(shè)備經(jīng)受了打仗的檢驗(yàn)。

龍巖bilibiliAIGC怎么樣,AIGC

    現(xiàn)代電子計(jì)算機(jī)的產(chǎn)生便是對(duì)人腦思維功能的模擬,是對(duì)人腦思維的信息過程的模擬。弱人工智能如今不斷地迅猛發(fā)展,尤其是2008年經(jīng)濟(jì)危機(jī)后,美日歐希望借機(jī)器人等實(shí)現(xiàn)再工業(yè)化,工業(yè)機(jī)器人以比以往任何時(shí)候更快的速度發(fā)展,更加帶動(dòng)了弱人工智能和相關(guān)領(lǐng)域產(chǎn)業(yè)的不斷突破,很多必須用人來做的工作如今已經(jīng)能用機(jī)器人實(shí)現(xiàn)。而強(qiáng)人工智能則暫時(shí)處于瓶頸,還需要科學(xué)家們和人類的努力。用來研究人工智能的主要物質(zhì)基礎(chǔ)以及能夠?qū)崿F(xiàn)人工智能技術(shù)平臺(tái)的機(jī)器就是計(jì)算機(jī),人工智能的發(fā)展歷史是和計(jì)算機(jī)科學(xué)技術(shù)的發(fā)展史聯(lián)系在一起的。除了計(jì)算機(jī)科學(xué)以外,人工智能還涉及信息論、控制論、自動(dòng)化、仿生學(xué)、生物學(xué)、心理學(xué)、數(shù)理邏輯、語(yǔ)言學(xué)、醫(yī)學(xué)和哲學(xué)等多門學(xué)科。 問題."邏輯行家"對(duì)公眾和AI研究領(lǐng)域產(chǎn)生的影響使它成為AI發(fā)展中一個(gè)重要的里程碑.泉州谷歌AIGC弊端

"邏輯行家"對(duì)公眾和AI研究領(lǐng)域產(chǎn)生的影響使它成為AI發(fā)展中一個(gè)重要的里程碑。龍巖bilibiliAIGC怎么樣

    那么,下一次員工所做的PPT很大概率還是不符合要求,因?yàn)?,沒有反饋思考,沒有HFRL,自然不會(huì)做出符合要求的工作。ChatGPT亦是如此。ChatGPT能夠回答出好的問題與它的“領(lǐng)導(dǎo)”所秉持的價(jià)值觀有很大關(guān)系。因此,你的“點(diǎn)踩”可能會(huì)影響ChatGPT的回答。ChatGPT的斐然特點(diǎn)如下:(3)多模態(tài)預(yù)訓(xùn)練大模型CLIP(OpenAI)2021年美國(guó)OpenAI公司發(fā)布了跨模態(tài)預(yù)訓(xùn)練大模型CLIP,該模型采用從互聯(lián)網(wǎng)收集的4億對(duì)圖文對(duì)。采用雙塔模型與比對(duì)學(xué)習(xí)訓(xùn)練方式進(jìn)行訓(xùn)練。CLIP的英文全稱是ContrastiveLanguage-ImagePre-training,即一種基于對(duì)比文本-圖像對(duì)的預(yù)訓(xùn)練方法或者模型。簡(jiǎn)單說,CLIP將圖片與圖片描述一起訓(xùn)練,達(dá)到的目的:給定一句文本,匹配到與文本內(nèi)容相符的圖片;給定一張圖片,匹配到與圖片相符的文本。 龍巖bilibiliAIGC怎么樣