納米力學(xué)從研究的手段上可分為納觀計(jì)算力學(xué)和納米實(shí)驗(yàn)力學(xué)。納米計(jì)算力學(xué)包括量子力學(xué)計(jì)算方法、分子動(dòng)力學(xué)計(jì)算和跨層次計(jì)算等不同類(lèi)型的數(shù)值模擬方法。納米實(shí)驗(yàn)力學(xué)則有兩層含義:一是以納米層次的分辨率來(lái)測(cè)量力學(xué)場(chǎng),即所謂的材料納觀實(shí)驗(yàn)力學(xué);二是對(duì)特征尺度為1-100nm之間的微細(xì)結(jié)構(gòu)進(jìn)行的實(shí)驗(yàn)力學(xué)研究,即所謂的納米材料實(shí)驗(yàn)力學(xué)。納米實(shí)驗(yàn)力學(xué)研究有兩種途徑:一是對(duì)常規(guī)的硬度測(cè)試技術(shù)、云紋法等宏觀力學(xué)測(cè)試技術(shù)進(jìn)行改造,使它們能適應(yīng)納米力學(xué)測(cè)量的需要;另一類(lèi)是創(chuàng)造如原子力顯微鏡、摩擦力顯微鏡等新的納米力學(xué)測(cè)量技術(shù)建立新原理、新方法。納米力學(xué)測(cè)試的結(jié)果可以為納米材料的安全性和可靠性評(píng)估提供重要依據(jù)。重慶微納米力學(xué)測(cè)試
納米劃痕法,納米劃痕硬度計(jì)主要是通過(guò)測(cè)量壓頭在法向和切向上的載荷和位移的連續(xù)變化過(guò)程,進(jìn)而研究材料的摩擦性能、塑性性能和斷裂性能的。納米劃痕儀器的設(shè)計(jì)主要有兩種方案 納米劃痕計(jì)和壓痕計(jì),合二為一即劃痕計(jì)的法向力和壓痕深度由高分辨率的壓痕計(jì)提供,同時(shí)記錄勻速移動(dòng)的試樣臺(tái)的位移,使壓頭沿試樣表面進(jìn)行刻劃,切向力由壓桿上的兩個(gè)相互垂直的力傳感器測(cè)量納米劃痕硬度計(jì)和壓痕計(jì)相互單獨(dú)。納米劃痕硬度計(jì),不只可以研究材料的摩擦磨損行為,還普遍應(yīng)用于薄膜的粘著失效和黏彈行為。對(duì)刻劃材料來(lái)說(shuō),不只載荷和壓入深度是重要的參數(shù),而且殘余劃痕的深度、寬度、凸起的高度在研究接觸壓力和實(shí)際摩擦也是十分重要的。目前,該類(lèi)儀器已普遍應(yīng)用于各種電子薄膜、汽車(chē)噴漆、膠卷、光學(xué)鏡 頭、磁盤(pán)、化妝品(指甲油和口紅)等的質(zhì)量檢測(cè)。四川國(guó)產(chǎn)納米力學(xué)測(cè)試原理納米力學(xué)測(cè)試還可以用于研究納米結(jié)構(gòu)材料的斷裂行為和變形機(jī)制。
納米拉曼光譜法,納米拉曼光譜法是一種非常有用的測(cè)試方法,可以用來(lái)研究材料的力學(xué)性質(zhì)。該方法利用激光對(duì)材料進(jìn)行激發(fā),通過(guò)測(cè)量材料產(chǎn)生的拉曼散射光譜來(lái)獲得材料的力學(xué)信息。納米拉曼光譜法可以提供關(guān)于材料中分子振動(dòng)的信息,從而揭示材料的化學(xué)成分和晶格結(jié)構(gòu)。利用納米拉曼光譜法可以研究材料的應(yīng)力分布、材料的強(qiáng)度以及材料在納米尺度下的變形行為等。納米拉曼光譜法具有非接觸、高靈敏度和高分辨率的特點(diǎn),適用于研究納米尺度材料力學(xué)性質(zhì)的表征。
納米壓痕儀的應(yīng)用,納米壓痕儀可適用于有機(jī)或無(wú)機(jī)、軟質(zhì)或硬質(zhì)材料的檢測(cè)分析,包括PVD、CVD、PECVD薄膜,感光薄膜,彩繪釉漆,光學(xué)薄膜,微電子鍍膜,保護(hù)性薄膜,裝飾性薄膜等等。基體可以為軟質(zhì)或硬質(zhì)材料,包括金屬、合金、半導(dǎo)體、玻璃、礦物和有機(jī)材料等。半導(dǎo)體技術(shù)(鈍化層、鍍金屬、Bond Pads);存儲(chǔ)材料(磁盤(pán)的保護(hù)層、磁盤(pán)基底上的磁性涂層、CD的保護(hù)層);光學(xué)組件(接觸鏡頭、光纖、光學(xué)刮擦保護(hù)層);金屬蒸鍍層;防磨損涂層(TiN, TiC, DLC, 切割工具);藥理學(xué)(藥片、植入材料、生物組織);工程學(xué)(油漆涂料、橡膠、觸摸屏、MEMS)等行業(yè)。利用大數(shù)據(jù)和人工智能技術(shù),優(yōu)化納米力學(xué)測(cè)試結(jié)果分析,提升研究效率。
納米纖維已經(jīng)展現(xiàn)出各種有趣的特性,除了高比表面積-體積比,納米纖維相比于塊狀材料,沿主軸方向有更突出的力學(xué)特性。因此納米纖維在復(fù)合材料、纖維、支架(組織工程學(xué))、藥物輸送、創(chuàng)傷敷料或紡織業(yè)等領(lǐng)域是一種非常有應(yīng)用前景的材料。納米纖維機(jī)械性能(剛度、彈性變形范圍、極限強(qiáng)度、韌性)的定量表征對(duì)理解其在目標(biāo)應(yīng)用中的性能非常重要,而測(cè)量這些參數(shù)需要高度專(zhuān)業(yè)畫(huà)的儀器,必須具備以下功能:以亞納米的分辨率測(cè)量非常小的變形;在測(cè)量的時(shí)間量程(例如100 s)內(nèi)在納米級(jí)的位移下保持高度穩(wěn)定的測(cè)量系統(tǒng);以亞納米分辨率測(cè)量微小力;處理(撿取-放置)納米纖維并將其放置在機(jī)械測(cè)試儀器上。納米力學(xué)測(cè)試在納米器件的設(shè)計(jì)和制造中具有重要作用。微電子納米力學(xué)測(cè)試原理
納米力學(xué)測(cè)試可以用于評(píng)估納米材料的耐久性和壽命,為產(chǎn)品的設(shè)計(jì)和使用提供參考依據(jù)。重慶微納米力學(xué)測(cè)試
納米云紋法,云紋法是在20世紀(jì)60年代興起的物體表面全場(chǎng)變形的測(cè)量技術(shù)。從上世紀(jì)80年代以來(lái),高頻率光柵制作技術(shù)已經(jīng)日趨成熟。目前高精度云紋干涉法通常使用的高密度光柵頻率已達(dá)到600~2400線mm,其測(cè)量位移靈敏度比傳統(tǒng)的云紋法高出幾十倍甚至上百倍。近年來(lái)云紋法的研究熱點(diǎn)已進(jìn)入微納尺度的變形測(cè)量,并出現(xiàn)與各種高分辨率電鏡技術(shù)、掃描探針顯微技術(shù)相結(jié)合的趨勢(shì)。顯微幾何云紋法,在光學(xué)顯微鏡下通過(guò)調(diào)整放大倍數(shù)將柵線放大到頻率小于40線/mm,然后利用分辨率高的感光膠片分別記錄變形前后的柵線,兩種柵線干涉后即可獲得材料表面納米級(jí)變形的云紋。重慶微納米力學(xué)測(cè)試