XB5352A電源管理IC磷酸鐵鋰充電管理

來源: 發(fā)布時間:2024-02-19

可用太陽能電池供電的鋰電池充電管理芯片CN3063? CN3063是可以用太陽能電池供電的單節(jié)鋰電池充電管理芯片。該器件內(nèi)部包括功率晶體管,應用時不需要外部的電流檢測電阻和阻流二極管。內(nèi)部的8位模擬-數(shù)字轉(zhuǎn)換電路,能夠根據(jù)輸入電壓源的電流輸出能力自動調(diào)整充電電流,用戶不需要考慮壞情況,可大限度地利用輸入電壓源的電流輸出能力,非常適合利用太陽能電池等電流輸出能力有限的電壓源供電的鋰電池充電應用。CN3063只需要極少的元器件,并且符合USB 總線技術(shù)規(guī)范,非常適合于便攜式應用的領(lǐng)域。熱調(diào)制電路可以在器件的功耗比較大或者環(huán)境溫度比較高的時候?qū)⑿酒瑴囟瓤刂圃诎踩秶鷥?nèi)。內(nèi)部固定的恒壓充電電壓為4.2V,也可以通過一個外部的電阻調(diào)節(jié)。充電電流通過一個外部電阻設(shè)置。當輸入電壓掉電時,CN3063自動進入低功耗的睡眠模式,此時電池的電流消耗小于3微安。其它功能包括輸入電壓過低鎖存,自動再充電,電池溫度監(jiān)控以及充電狀態(tài)/充電結(jié)束狀態(tài)指示等功能。帶負載防電芯反接0V可充支持帶負載電芯反接。XB5352A電源管理IC磷酸鐵鋰充電管理

XB5352A電源管理IC磷酸鐵鋰充電管理,電源管理IC

低壓差線性穩(wěn)壓器原理上與一般的線性直流穩(wěn)壓器基本相同,區(qū)別在于低壓差穩(wěn)壓器輸出端的功率由NPN晶體管共集極架構(gòu)改為PNP集電極開路架構(gòu)(以使用雙極性晶體管以言)。這種架構(gòu)下,功率晶體管的控制極只要利用對地的電壓差就能讓晶體管處于飽和導通狀態(tài),因此輸入端只需高出輸出端多于功率晶體管的飽和電壓,穩(wěn)壓器就能運作,穩(wěn)定輸出電壓。 這類設(shè)計在保持穩(wěn)定性方設(shè)計難度較高,因為輸出級的阻抗較大,較易不穩(wěn)定或起振。 低壓差穩(wěn)壓器所使用的功率晶體管可以是雙極性晶體管或場效晶體管。 雙極性晶體管因為基極電流的關(guān)系,會耗用額外的電流,增加功耗,在相對高輸出電壓、低輸出電流、低輸出輸入電壓差的情況下尤其明顯。 場效晶體管沒有雙極性晶體管的功耗問題,但其所需導通的閘極電壓限制了其在低輸出電低的應用,而且場效晶體管管的成本較高。隨著半導體技術(shù)的進步,這兩方面的問題都得以改善。XB4906AJL電源管理IC二合一鋰電保護電池充管理芯片磷酸鐵鋰。

XB5352A電源管理IC磷酸鐵鋰充電管理,電源管理IC

磷酸鐵鋰電池的充放電反應是在LiFePO4和FePO4兩相之間進行。在充電過程中,LiFePO4逐漸脫離出鋰離子形成FePO4,在放電過程中,鋰離子嵌入FePO4形成LiFePO4。 電池充電時,鋰離子從磷酸鐵鋰晶體遷移到晶體表面,在電場力的作用下,進入電解液,然后穿過隔膜,再經(jīng)電解液遷移到石墨晶體的表面,而后嵌入石墨晶格中。 與此同時,電子經(jīng)導電體流向正極的鋁箔集電極,經(jīng)極耳、電池正極柱、外電路、負極極柱、負極極耳流向電池負極的銅箔集流體,再經(jīng)導電體流到石墨負極,使負極的電荷達至平衡。鋰離子從磷酸鐵鋰脫嵌后,磷酸鐵鋰轉(zhuǎn)化成磷酸鐵。 電池放電時,鋰離子從石墨晶體中脫嵌出來,進入電解液,然后穿過隔膜,經(jīng)電解液遷移到磷酸鐵鋰晶體的表面,然后重新嵌入到磷酸鐵鋰的晶格內(nèi)。 與此同時,電子經(jīng)導電體流向負極的銅箔集電極,經(jīng)極耳、電池負極柱、外電路、正極極柱、正極極耳流向電池正極的鋁箔集流體,再經(jīng)導電體流到磷酸鐵鋰正極,使正極的電荷達至平衡。鋰離子嵌入到磷酸鐵晶體后,磷酸鐵轉(zhuǎn)化為磷酸鐵鋰。

DC/DC轉(zhuǎn)換器在高效率地轉(zhuǎn)換能量方面屬于有效的電源,但因為線圈必須具有磁飽和特性和防止燒毀的特性,使得實現(xiàn)超薄化較為困難。一般情況下只得在成平面形狀的電路板上安裝IC、線圈及電容,這種解決方案不利于產(chǎn)品的小型化。 為了解決以上的問題,進行了以下幾種思考和設(shè)計。首先是在硅晶圓上形成線圈的方法,為了確保作為DC/DC轉(zhuǎn)換器時具有足夠的電感值,半導體工藝變得極為復雜,使得成本上升。實際上只停留在高頻濾波器方面的應用。其次是把線圈和DC/DC轉(zhuǎn)換器IC封入一個塑料模壓封裝組件中的方法,因為只是單純地裝入元器件縮小不了太多的安裝面積,不能帶來大程度的改善。 進而出現(xiàn)了不是平面地放置各種元器件,而是把包括IC的元器件疊在一起的設(shè)計方案,實際上也出現(xiàn)的幾種這樣的產(chǎn)品。但是這種方案要么需要在線圈上印制布線用的圖案,要么需要CSP(芯片尺寸級封裝)型IC,要么在封裝IC時必須實施模壓工程,使得制作工程復雜,帶來了產(chǎn)生成本上升的課題。正極保護IC、的鋰電池保護方案。

XB5352A電源管理IC磷酸鐵鋰充電管理,電源管理IC

4、保護芯片過放保護:在P+與P-上接上一合適的負載后,電池開始放電其電流方向如I2,電流從電池的正極經(jīng)負載、D2、MOS1到電池的負極,(這時MOS2被D2短路);當電池放電到2.5 v時IC采樣并發(fā)出指令,讓MOS1截止,回路斷開,電池被保護了。 5、過流保護:在P+與P-上接上一合適的負載后,電池開始放電其電流方向如I2,電流從電池的正極經(jīng)負載、D2、MOS1到電池的負極,(這時MOS2被D2短路);當負載突然減小,IC通過VM引腳采樣到突然增大電流而產(chǎn)生的電壓這時IC采樣并發(fā)出指令,讓MOS1截止,回路斷開,電池被保護了。 6、短路保護:在P+與P-上接上空負載后,電池開始放電其電流方向如I2,電流從電池的正極經(jīng)負載、D2、MOS1到電池的負極,(這時MOS2被D2短路); IC通過VM引腳采樣到突然增大電流而產(chǎn)生的電壓這時IC采樣并發(fā)出指令,讓MOS1截止,回路斷開,電池被保護了。鋰保PCB應用注意事項-布局。XC3108RD電源管理ICLED線性驅(qū)動芯片手電筒驅(qū)動

40V耐壓、高PSRR,LDO,完全沒凸波。XB5352A電源管理IC磷酸鐵鋰充電管理

鋰電池PACK設(shè)計過程中鋰電池保護IC是保護芯片的,首先取樣電池電壓,然后通過判斷發(fā)出各種指令。MOS管:它主要起開關(guān)作用 2、保護芯片正常工作:保護芯片上MOS管剛開始可能處于關(guān)斷狀態(tài),電池接上保護芯片后,必須先觸發(fā)MOS管,P+與P-端才有輸出電壓,觸發(fā)常用方法——用一導線把B-與P-短接。 3、保護芯片過充保護:在P+與P-上接上一高于電池電壓的電源,電源的正極接B+、電源的負極接B-,接好電源后,電池開始充電,電流方向如圖所示的I1的流向電流從電源正極出發(fā),流經(jīng)電池、D1、MOS2到電源負極(這時MOS1被D1短路),IC通過電容來取樣電池電壓的值,當電池電壓達到4.25v時,IC發(fā)出指令,使引腳CO為低電平,這時電流從電源正極出發(fā),流經(jīng)電池、D1、到達MOS2時由于MOS2的柵極與CO相連也為低電平,MOS2關(guān)斷,整個回路被關(guān)斷,電路起到保護作用。 XB5352A電源管理IC磷酸鐵鋰充電管理

標簽: 電源管理IC