宜昌冷凍電鏡單顆粒技術(shù)服務(wù)

來源: 發(fā)布時(shí)間:2023-09-23

冷凍電鏡技術(shù)之冷凍透射電鏡:冷凍透射電鏡(Cryo-TEM)通常是在普通透射電鏡上加裝樣品冷凍設(shè)備,將樣品冷卻到液氮溫度(77K),用于觀測(cè)蛋白、生物切片等對(duì)溫度敏感的樣品。通過對(duì)樣品的冷凍,可以降低電子束對(duì)樣品的損傷,減小樣品的形變,從而得到更加真實(shí)的樣品形貌。它的優(yōu)點(diǎn)主要體現(xiàn)在以下幾個(gè)方面:首先是加速電壓高,電子能穿透厚樣品;第二是透鏡多,光學(xué)性能好;第三是樣品臺(tái)穩(wěn)定;第四是全自動(dòng),自動(dòng)換液氮,自動(dòng)換樣品,自動(dòng)維持清潔。冷凍電鏡技術(shù)之冷凍蝕刻電子顯微鏡優(yōu)點(diǎn):冷凍蝕刻的樣品,經(jīng)鉑、碳噴鍍而制備的復(fù)型膜具有很強(qiáng)的立體感。宜昌冷凍電鏡單顆粒技術(shù)服務(wù)

宜昌冷凍電鏡單顆粒技術(shù)服務(wù),冷凍透射電子顯微鏡技術(shù)服務(wù)

單顆粒冷凍電鏡技術(shù)二維圖像分析——顆粒圖像的匹配與分類:二維顆粒圖像的分類是獲取三維結(jié)構(gòu)過程的第一步。對(duì)二維圖像的分析包括兩部分:顆粒圖像的匹配和顆粒圖像的分類。匹配的過程通常會(huì)對(duì)顆粒圖像應(yīng)用一些變換操作,通過關(guān)聯(lián)函數(shù)去判斷不同顆粒圖像之間的相似程度。圖像匹配的算法主要分為兩種,即不依賴模型的方法和基于模型的方法,取決于是否存在利用樣本先驗(yàn)信息得到的模板。隨著圖像匹配的完成,顆粒圖像需要進(jìn)行分類。主要利用多元統(tǒng)計(jì)分析和主成分分析方法等算法,其他流行的二維顆粒分類技術(shù)還有神經(jīng)網(wǎng)絡(luò)分類,將圖像在二維空間自組織映射(self-organisingmapping,SOM)再進(jìn)行分類和排序。二維圖像分析的目的是,首先通過圖像匹配消除旋轉(zhuǎn)和平移的誤差,利用類內(nèi)緊致、類間離散的原則進(jìn)行圖像分類,較終可以對(duì)類內(nèi)顆粒圖像進(jìn)行平均,提高信噪比,從而實(shí)現(xiàn)對(duì)高分辨率三維結(jié)構(gòu)的構(gòu)建。蕪湖低溫透射電鏡技術(shù)哪家好冷凍電鏡技術(shù)將在研究對(duì)象、分辨率水平和研究方法等各個(gè)方面取得重大進(jìn)展。

宜昌冷凍電鏡單顆粒技術(shù)服務(wù),冷凍透射電子顯微鏡技術(shù)服務(wù)

冷凍電鏡技術(shù)近年來獲得了迅猛的發(fā)展,取得了許多具有重大意義的成果。冷凍電鏡將生物分子進(jìn)行冷凍便可進(jìn)行高分辨率成像,還具有分辨率高、更接近天然狀態(tài)、適用研究對(duì)象普遍等優(yōu)勢(shì)。同時(shí),系統(tǒng)地綜述了冷凍電鏡技術(shù)在科學(xué)研究中的應(yīng)用,并展望冷凍電鏡技術(shù)未來的發(fā)展。冷凍電鏡(cryo-electronmicroscopy,cryo-EM)技術(shù),是在低溫下使用透射電子顯微鏡觀察樣品的顯微技術(shù),即把樣品冷凍并保持低溫放進(jìn)顯微鏡里面,用高度相干的電子作為光源從上面照射,透過樣品和附近的冰層,受到散射,再利用探測(cè)器和透鏡系統(tǒng)把散射信號(hào)成像記錄下來,較后進(jìn)行信號(hào)處理,得到樣品的結(jié)構(gòu)。

冷凍電鏡技術(shù)的應(yīng)用場(chǎng)景:冷凍電鏡主要應(yīng)用在結(jié)構(gòu)生物學(xué)和材料科學(xué)當(dāng)中,如在2020戴口罩戴口罩中研究人員通過冷凍電鏡技術(shù)在解析病毒結(jié)構(gòu)、推測(cè)其侵染人體細(xì)胞的路徑等傳播原理發(fā)揮了重要作用,研究人員將戴口罩的結(jié)構(gòu)與其他幾種冠狀病毒進(jìn)行了比較,發(fā)現(xiàn)2019-nCoV的S蛋白整體結(jié)構(gòu)與SARS病毒S蛋白的整體結(jié)構(gòu)相似,各個(gè)結(jié)構(gòu)之間具有高度同源性。在材料科學(xué)的應(yīng)用中,冷凍電鏡技術(shù)在一些對(duì)電子束、熱敏感材料,如鈣鈦礦材料、某些高分子材料、水凝膠、量子點(diǎn)等精細(xì)結(jié)構(gòu)的物理表征與機(jī)理研究中也具有巨大的應(yīng)用潛力。冷凍電鏡技術(shù)之冷凍掃描電鏡是克服樣品含水問題的一個(gè)快速、可靠和有效的方法。

宜昌冷凍電鏡單顆粒技術(shù)服務(wù),冷凍透射電子顯微鏡技術(shù)服務(wù)

冷凍電子顯微鏡技術(shù)中電子斷層掃描重構(gòu)技術(shù):電子斷層掃描技術(shù)是從一個(gè)物體的投影圖像重構(gòu)獲得物體內(nèi)部結(jié)構(gòu)的技術(shù),通過獲取同一物體的多個(gè)連續(xù)角度下的二維投影圖來反向重構(gòu)它的三維結(jié)構(gòu)。簡(jiǎn)單地說,電子斷層掃描技術(shù)就是將一個(gè)物體(樣品)沿著一個(gè)與電子束垂直的軸旋轉(zhuǎn),每旋轉(zhuǎn)一個(gè)角度,采集這個(gè)物體在相對(duì)應(yīng)方向上的二維投影像,通過對(duì)這些二維投影圖的處理(相互配準(zhǔn)),將不同角度的二維投影圖反向重構(gòu)(如加權(quán)背投影等方法),獲得樣品整體三維結(jié)構(gòu)的技術(shù)。電子斷層成像適合于在納米級(jí)尺度上研究不具有結(jié)構(gòu)均一性的蛋白、病毒、細(xì)胞器以及它們之間組成的復(fù)合體的三維結(jié)構(gòu)。與電子晶體學(xué)和單顆粒技術(shù)相比,這種技術(shù)無需樣品顆粒具有結(jié)構(gòu)同一性,也不強(qiáng)調(diào)樣品具有一定的對(duì)稱性。因此,雖然目前電子斷層成像所獲得的結(jié)構(gòu)的分辨率(約4~10納米)不能與以上兩種技術(shù)相比,但其在研究非定形、不對(duì)稱和不具全同性的生物樣品的三維結(jié)構(gòu)和功能中有著不可替代的作用。冷凍電鏡技術(shù)也正在成為助力醫(yī)藥研發(fā)的有力手段。蕪湖低溫透射電鏡技術(shù)哪家好

冷凍電鏡技術(shù)之冷凍蝕刻電子顯微鏡優(yōu)點(diǎn):可研究細(xì)胞內(nèi)的膜性結(jié)構(gòu)及內(nèi)含物結(jié)構(gòu)。宜昌冷凍電鏡單顆粒技術(shù)服務(wù)

低溫透射電鏡技術(shù)的應(yīng)用:膠束體系對(duì)于濃度、pH、添加劑種類等液相環(huán)境條件的變化非常敏感,如果是干燥狀態(tài)其結(jié)構(gòu)與有液相完全不同,因此必須用低溫透射電鏡表征其結(jié)構(gòu)。通常情況下,膠束有球狀、囊泡狀、棒狀、層狀、六角束狀、洋蔥狀、蠕蟲狀等多種形狀,應(yīng)用低溫透射電鏡技術(shù),囊泡、膠束的結(jié)構(gòu)可以被原位的真實(shí)呈現(xiàn)出來,可清晰地觀察到囊泡的完整性、分布、大小、融合等情況,而在普通電鏡條件下,干燥后的囊泡的形狀、結(jié)構(gòu)很容易發(fā)生變化。同樣,低溫透射電鏡也能夠有效保持聚合物在液相的形態(tài),可清晰地觀察到聚合物的形態(tài)及聚集狀態(tài)。目前,低溫透射電鏡在生物大分子的成像尤其是蛋白結(jié)構(gòu)的解析方面已經(jīng)取得了諸多突破的成果,相信在化學(xué)分子材料領(lǐng)域也會(huì)展現(xiàn)很好的應(yīng)用前景。宜昌冷凍電鏡單顆粒技術(shù)服務(wù)