黃山在體實時監(jiān)測光纖成像記錄技術(shù)

來源: 發(fā)布時間:2021-12-10

隨著熒光標記技術(shù)和光學(xué)成像技術(shù)的發(fā)展, 在體生物光學(xué)成像(In vivo optical imaging)已經(jīng)發(fā)展 為一項嶄新的分子、 基因表達的分析檢測技術(shù),在 生命科學(xué)、 醫(yī)學(xué)研究及藥物研發(fā)等領(lǐng)域得到較多應(yīng)用, 主要分為在體生物發(fā)光成像(Bioluminescence imaging,BLI) , 和在體熒光成像,在體光纖成像記錄(Fluorescence imaging)兩種成像方式。 在體生物發(fā)光成像采用熒光素酶基因標記細胞或DNA, 在體熒光成像則采用熒光報告基團, 如綠色熒光蛋白, 紅色熒光蛋白等進行標記 , 利用靈敏的光學(xué)檢測儀器, 如電荷耦合攝像機 (CCD), 觀測活的物體動物體內(nèi)疾病的發(fā)生的發(fā)展、 壞掉的的生長及轉(zhuǎn)移、 基因的表達及反應(yīng)等生物學(xué)過程, 從而監(jiān)測活的物體生物體內(nèi)的細胞活動和基因行為。在體光纖成像記錄能夠?qū)λ幬锖Y選及療效進行評價。黃山在體實時監(jiān)測光纖成像記錄技術(shù)

黃山在體實時監(jiān)測光纖成像記錄技術(shù),在體光纖成像記錄

在體光纖成像記錄,指的是利用光學(xué)的探測手段結(jié)合光學(xué)探測分子對細胞或者組織甚至生物體進行成像,來獲得其中的生物學(xué)信息的方法。傳統(tǒng)的動物實驗方法需要在不同的時間點處死實驗動物,以獲得多個時間點的實驗數(shù)據(jù)。而在體光纖成像記錄則可以對同一觀察目標進行連續(xù)的查看并記錄其變化,從而達到簡化實驗的目的。光在體內(nèi)組織中傳播時會被散射和吸收,血紅蛋白吸收可見光中藍綠光波段的大部分,但是波長大于600nm的紅光波段無法被其吸收,可以穿過組織和皮膚被檢測到。在相同的深度情況下,檢測到的發(fā)光強度和細胞數(shù)量具有線性關(guān)系。光源的發(fā)光強度隨深度增加而衰減,血液豐富的組織/系統(tǒng)衰減多,與骨骼相鄰的組織/系統(tǒng)衰減少。常州鈣熒光指示蛋白病毒影像光纖應(yīng)用在體光纖成像記錄檢測熒光信號的微弱變化。

黃山在體實時監(jiān)測光纖成像記錄技術(shù),在體光纖成像記錄

在體光纖成像記錄活細胞成像的安全性,對于被標記細胞的基因表達譜和蛋白質(zhì)組進行分析,可以評估報告基因?qū)毎δ艿母蓴_作用。小動物活的物體成像技術(shù),活的物體動物成像技術(shù)的優(yōu)勢,1、實現(xiàn)實時、無創(chuàng)的在體監(jiān)測 2、發(fā)現(xiàn)早期病變,縮短評價周期3、評價更科學(xué),準確、可靠4、獲得更多的評價數(shù)5、降低研發(fā)的風險和開支6、更好的遵守3R原則,在體光學(xué)成像技術(shù)的應(yīng)用潛力依賴于光學(xué)成像逆向問題算法的新進展.為了解決復(fù)雜生物組織中的非勻質(zhì)問題。

在體光纖成像記錄能夠同時測量多個光纖源的光偏振態(tài),開啟了在許多應(yīng)用中通過控制偏振態(tài)創(chuàng)造的反饋回路的可能性。例如,高功率的激光放大器和那些依賴于融合多個相同性質(zhì)激光束產(chǎn)生高密度局部化光束的無透鏡成像。偏振是實現(xiàn)高的度激光束控制的關(guān)鍵特性之一。此外,在光學(xué)成像的應(yīng)用中,基于多芯光纖的內(nèi)窺鏡在使用中必須彎曲和移動。對每個光纖的光偏振態(tài)的實時監(jiān)測將使科學(xué)家能夠控制并精確光纖激光束,以實現(xiàn)高分辨率圖像。在這項研究中,研究人員將這兩種技術(shù)應(yīng)用于兩種類型的多芯光纖:保偏多芯光纖和由475個光纖芯組成的傳統(tǒng)光纖束。在體光纖成像記錄光源的發(fā)光強度隨深度增加而衰減。

黃山在體實時監(jiān)測光纖成像記錄技術(shù),在體光纖成像記錄

在體光纖成像記錄與傳統(tǒng)的醫(yī)學(xué)顯微成像系統(tǒng)相結(jié)合,已形成光纖OCT成像系統(tǒng)、光纖共焦顯微成像系統(tǒng)、關(guān)聯(lián)成像、光纖多光子成像技術(shù)以及三維成像等技術(shù),發(fā)揮了原有顯微系統(tǒng)的長處,可應(yīng)用到更多原來儀器所無法使用的場合。經(jīng)過近10年的發(fā)展,單光纖成像技術(shù)在成像機理、成像質(zhì)量和應(yīng)用研究等方面都取得了很大的進步,為超細內(nèi)窺鏡技術(shù)的發(fā)展提供了新的方向,并使內(nèi)窺鏡在新領(lǐng)域的應(yīng)用成為可能。近幾年,衍射成像技術(shù)和計算成像技術(shù)成為新的研究熱點,該領(lǐng)域的研究成果為單光纖成像技術(shù)提供了更多的技術(shù)支持。在體光纖成像記錄成像系統(tǒng)是典型的在體熒光成像系統(tǒng)。黃山在體實時監(jiān)測光纖成像記錄技術(shù)

現(xiàn)有技術(shù)中的在體光纖成像記錄系統(tǒng)仍包含多根多模光纖。黃山在體實時監(jiān)測光纖成像記錄技術(shù)

根據(jù)在體光纖成像記錄成像方式的不同, 在體生物發(fā)光成像主要有生物發(fā)光成像,和生物發(fā)光斷層成像兩種。其中,輸出是二維圖像, 即生物體外探測器上采集的光學(xué)信號,其原理簡單、 使用方便快捷, 適用于 定性分析及簡單的定量計算, 但無法獲得生物體內(nèi)發(fā)光光源的深度信息, 難以實現(xiàn)光源的準確定位。 而成像系統(tǒng)則利用 多個生物體外探測器上采集的光學(xué)信號, 根據(jù)斷層成像的原理, 采用特定的 反演算法 ,得到活的物體小動物體 內(nèi)發(fā)光光源的精確位置信息。目前, BLT的光源定位和生物組織光學(xué)特性參數(shù)的反演問題 已經(jīng)成為國內(nèi)外在體生物光學(xué)成像研究的重點和難點之一, 但還限于于實驗室研究階段, 沒有達到臨床實驗的階段, 所 以尚未有成熟的成像系統(tǒng)。黃山在體實時監(jiān)測光纖成像記錄技術(shù)