一個高通量藥物篩選體系包括微量和半微量的藥理實驗?zāi)P汀悠穾旃芾硐到y(tǒng)、自動化的實驗操作系統(tǒng)、高靈敏度檢測系統(tǒng)以及數(shù)據(jù)采集和處理系統(tǒng),這些系統(tǒng)的運行保證了篩選體系能夠并行操作搜索大量候選化合物。高通量篩選技術(shù)結(jié)合了分子生物學(xué)、醫(yī)學(xué)、藥學(xué)、計算科學(xué)以及自動化技術(shù)等學(xué)科的知識和先進(jìn)技術(shù),成為當(dāng)今藥物開發(fā)的主要方式。完整的高通量篩選體系由于高度的整合和自動化,因而又被稱作“藥物篩選機器人系統(tǒng)。 虛擬藥物篩選是藥物篩選技術(shù)發(fā)展的另一個方向,由于實體的藥物篩選需要構(gòu)建大規(guī)模的化合物庫,提取或培養(yǎng)大量實驗必須的靶酶或者靶細(xì)胞,并且需要復(fù)雜的設(shè)備支持,因而進(jìn)行實體的藥物篩選要投入巨額的資金,虛擬藥物篩選是將藥物篩選的過程在計算機上模擬,對化合物可能的活性作出預(yù)測,進(jìn)而對比較有可能成為藥物的化合物進(jìn)行有針對性的實體體篩選,從而可以極大地減少藥物開發(fā)成本。氨基酸菌種的高通量篩選。內(nèi)蒙古酶的高通量篩選
高通量篩選的特色效用高通量篩選技術(shù)是將多種技術(shù)方法有機結(jié)合而形成的一種新技術(shù)體系,它以微板形式作為實驗工具載體,以自動化操作系統(tǒng)執(zhí)行實驗過程,以靈敏快速的檢測儀器采集實驗數(shù)據(jù),以計算機對數(shù)以千計的樣品數(shù)據(jù)進(jìn)行分析處理,從而得出科學(xué)準(zhǔn)確的實驗結(jié)果和特色效用。英國學(xué)者AlanD研究提示,一個實驗室采用傳統(tǒng)的方法,借助20余種藥物作用靶位,1年內(nèi)能篩選75000個樣品;1997年高通量篩選技術(shù)發(fā)展初期,采用100余種靶位,每年可篩選100萬個樣品;1999年高通量篩選技術(shù)進(jìn)一步完善后,每天的篩選量就高達(dá)10萬種化合物。安徽菌種高通量篩選全自動高通量篩選工作站。
開發(fā)一種新藥的過程可能是漫長、復(fù)雜和不確定的,但從社會、科學(xué)和經(jīng)濟的角度來看,它也可能是高回報的。高通量篩選(HTS)已經(jīng)成為藥物發(fā)現(xiàn)的主要工具。,向大家介紹目前用于靶標(biāo)確認(rèn)的幾種HTS方法,主要分為兩大類:生化水平和細(xì)胞水平。生化水平分析包括比率熒光法(FA/FP)、熒光共振能量轉(zhuǎn)移(FRET)、時間分辨熒光共振能量轉(zhuǎn)移(TR-FRET)等;細(xì)胞水平的分析包括細(xì)胞活力、報告基因、第二信使和高內(nèi)涵成像等。生化篩選利用純化的目標(biāo)蛋白,在體外測定配體的結(jié)合或酶活性的抑制。這些檢測通常在384孔板中以競爭的形式進(jìn)行,其中所研究的化合物必須取代已知的配體或底物。熒光法由于其使用簡便、靈敏度高和靈活性強等特點,廣受科研人員的歡迎,主要有比率熒光法(FA/FP)、熒光共振能量轉(zhuǎn)移(FRET)、時間分辨熒光共振能量轉(zhuǎn)移(TR-FRET)。
時間分辨熒光共振能量轉(zhuǎn)移(TR-FRET)原理為具有長壽命熒光(通常為100秒的毫秒至毫秒)的鑭系配合物用作FRET供體,熒光蛋白或有機熒光團(例如,別藻藍(lán)素或Cy5)用作受體。普通熒光的半衰期為納秒級,鑭系元素的半衰期為毫秒級,有6個數(shù)量級的差別。所以在檢測時,TR-FRET有一個時間延遲~100微秒,從而使反應(yīng)體系內(nèi)普通背景熒光信號消耗掉,因此TR-FRET的背景信號非常低,能夠反映樣品實際情況?;诩?xì)胞水平的篩選的關(guān)鍵特征之一是可以一次篩選多個靶標(biāo)?;诩?xì)胞的篩選常用于以下情況下:1)所需的分子靶標(biāo)未知,2)靶標(biāo)無法在生化測定中充分重組,3)所需的表型只存在于細(xì)胞環(huán)境中,例如從一種細(xì)胞類型分化到另一種細(xì)胞類型?;诩?xì)胞的檢測貫穿于藥物發(fā)現(xiàn)的所有階段:靶標(biāo)選擇和驗證、初步篩選、先導(dǎo)化合物識別、先導(dǎo)化合物優(yōu)化以及安全和毒理學(xué)篩選。介紹一些細(xì)胞水平分析的方法:細(xì)胞活力、報告基因、第二信使和高內(nèi)涵成像等。高通量篩選樣品用量。
正如之前提到,在高通量篩選中Assay的檢出方法有很多,用于衡量酶活性多的當(dāng)屬于熒光檢出法和吸光度檢出法。這兩種方法都能非常便捷的與高通量進(jìn)行匹配。但是這兩種檢出方法也有不適用的場景,比如吸光度檢出法,在終點法測定(endpointassay)時,如果化合物庫的吸收低于~410nm,實驗的背景吸收會引入假陽性(false-positive)和假陰性(false-negative)結(jié)果。雖然假陽性結(jié)果可以通過動力學(xué)Assay或者驗證Assay來解決,但是由于微量定量板有位于340~410nm的強吸收,所以仍舊會導(dǎo)致Z因子降低,直接結(jié)果就是較弱活性的苗頭化合物將很難被篩選出來。而對于熒光檢出法而言,自發(fā)熒光化合物庫或者具有光敏特性的化合物庫同樣會遇到假陽性和假陰性結(jié)果。在某種程度上,選擇合適的檢出方法可以減少甚至避免上述問題,比如使用更長波段的光源,對于熒光檢出來說,>500nm會是比較好的選擇。小分子垂釣等高通量篩選。新疆菌株高通量篩選
高通量篩選微生物技術(shù)。內(nèi)蒙古酶的高通量篩選
藥物研發(fā)與開發(fā)是一個復(fù)雜與漫長的過程,特別是小分子藥物的研發(fā),其難點和關(guān)鍵在于如何快速高效的找到先導(dǎo)化合物(LeadCompound)。采用高通量藥物篩選(High-throughputscreening,HTS)來發(fā)現(xiàn)新的先導(dǎo)化合物仍然是小分子藥物研發(fā)的優(yōu)先。傳統(tǒng)藥物篩選是一個耗時長且昂貴的過程,一般需要消耗大量的樣品和實驗動物,對技術(shù)人員的操作技能有較高要求,難以在短時間內(nèi)對一定數(shù)量的樣品開展有效和經(jīng)濟的篩選。隨著各類化合物樣品庫儲量的不斷增加以及組合化學(xué)技術(shù)的應(yīng)用,采用傳統(tǒng)手段篩選海量樣品不僅不可能而且極大地限制了新藥研究之進(jìn)程。內(nèi)蒙古酶的高通量篩選