基于多光子顯微鏡的神經(jīng)成像技術(shù)原理:多光子顯微鏡可用于深度成像和三維成像,因此可用于拍攝不透明的厚樣品。目前主要使用的多光子顯微鏡包括雙光子顯微鏡和三光子顯微鏡。雙光子顯微鏡的結(jié)構(gòu)與共焦類似,區(qū)別在于:1)雙光子顯微鏡的激發(fā)光波長比共焦長,能量較低,但穿透能力較強(qiáng);2)雙光子顯微鏡沒有小孔,提高了檢測效率;3)雙光子顯微鏡成像深度較快提高。那么,為什么雙光子能具有共焦顯微鏡所沒有的優(yōu)勢呢?原因是它采用雙光子激發(fā)方式。使用波長較長的激發(fā)光子,光子的能量較低,因此電子需要吸收兩個(gè)這樣的激發(fā)光子才能達(dá)到激發(fā)態(tài),從而釋放出一個(gè)熒光光子。因此,熒光信號的強(qiáng)度與光強(qiáng)的平方成正比。因?yàn)榻裹c(diǎn)處的光強(qiáng)較大,只能在焦點(diǎn)處激發(fā)熒光。波長越長,穿透力越強(qiáng),因此雙光子顯微鏡的成像深度大于共焦顯微鏡。由于兩個(gè)光子只在焦點(diǎn)激發(fā)熒光,不需要小孔,而是將所有的熒光都收集起來,提高了檢測效率。三光子顯微鏡的原理類似于雙光子顯微鏡,利用三個(gè)激發(fā)光子可以實(shí)現(xiàn)更深的成像深度。由于使用了更長的激發(fā)波長,穿透能力更強(qiáng),成像深度更大。此外,由于較強(qiáng)的非線性效應(yīng),熒光信號的強(qiáng)度與光強(qiáng)的立方成正比,因此比雙光子具有更低的非聚焦激發(fā)和背景噪聲。多光子顯微鏡使用高能量鎖模脈沖激光器。Ultima 2P Plus多光子顯微鏡長時(shí)間觀察
快速光柵掃描有多種實(shí)現(xiàn)方式,使用振鏡進(jìn)行快速2D掃描,將振鏡和可調(diào)電動透鏡結(jié)合在一起進(jìn)行快速3D掃描,但可調(diào)電動透鏡由于機(jī)械慣性的限制在軸向無法快速進(jìn)行焦點(diǎn)切換,影響成像速度,現(xiàn)可使用空間光調(diào)制器(SLM)代替。遠(yuǎn)程聚焦也是一種實(shí)現(xiàn)3D成像的手段,如圖2所示。在LSU模塊中,掃描振鏡進(jìn)行橫向掃描,ASU模塊包括物鏡L1和反射鏡M,通過調(diào)控M的位置實(shí)現(xiàn)軸向掃描。該技術(shù)不僅可以校正主物鏡L2引入的光學(xué)像差,還可以進(jìn)行快速的軸向掃描。想要獲得更多神經(jīng)元成像,可以通過調(diào)整顯微鏡的物鏡設(shè)計(jì)來擴(kuò)大FOV,但是具有大NA和大FOV的物鏡通常重量較大,無法快速移動以進(jìn)行快速軸向掃描,因此大型FOV系統(tǒng)依賴于遠(yuǎn)程聚焦、SLM和可調(diào)電動透鏡。共聚焦多光子顯微鏡成像深度多光子顯微鏡的成熟的深部組織成像技術(shù)中。還有其他類型的圖像對比提供有關(guān)樣本的有價(jià)值信息。
多束掃描技術(shù)可以同時(shí)對神經(jīng)元組織的不同位置進(jìn)行成像對兩個(gè)遠(yuǎn)距離(相距大于1-2mm)的成像部位,通常使用兩條單獨(dú)的路徑進(jìn)行成像;對于相鄰區(qū)域,通常使用單個(gè)物鏡的多光束進(jìn)行成像。多光束掃描技術(shù)必須特別注意激發(fā)光束之間的串?dāng)_問題,這個(gè)問題可以通過事后光源分離方法或時(shí)空復(fù)用方法來解決。事后光源分離方法指的是用算法來分離光束消除串?dāng)_;時(shí)空復(fù)用方法指的是同時(shí)使用多個(gè)激發(fā)光束,每個(gè)光束的脈沖在時(shí)間上延遲,這樣就可以暫時(shí)分離被不同光束激發(fā)的單個(gè)熒光信號。引入越多路光束就可以對越多的神經(jīng)元進(jìn)行成像,但是多路光束會導(dǎo)致熒光衰減時(shí)間的重疊增加,從而限制了區(qū)分信號源的能力;并且多路復(fù)用對電子設(shè)備的工作速率有很高的要求;大量的光束也需要更高的激光功率來維持近似單光束的信噪比,這會容易導(dǎo)致組織損傷。
對兩個(gè)遠(yuǎn)距離(相距大于1-2mm)的成像部位,通常使用兩條單獨(dú)的路徑進(jìn)行成像;對于相鄰區(qū)域,通常使用單個(gè)物鏡的多光束進(jìn)行成像。多光束掃描技術(shù)必須特別注意激發(fā)光束之間的串?dāng)_問題,這個(gè)問題可以通過事后光源分離方法或時(shí)空復(fù)用方法來解決。事后光源分離方法指的是用算法來分離光束消除串?dāng)_;時(shí)空復(fù)用方法指的是同時(shí)使用多個(gè)激發(fā)光束,每個(gè)光束的脈沖在時(shí)間上延遲,這樣就可以暫時(shí)分離被不同光束激發(fā)的單個(gè)熒光信號。引入越多路光束就可以對越多的神經(jīng)元進(jìn)行成像,但是多路光束會導(dǎo)致熒光衰減時(shí)間的重疊增加,從而限制了區(qū)分信號源的能力;并且多路復(fù)用對電子設(shè)備的工作速率有很高的要求;大量的光束也需要更高的激光功率來維持近似單光束的信噪比,這會容易導(dǎo)致組織損傷。光子顯微鏡是一種使用可見光或近紅外光的顯微鏡。
與傳統(tǒng)的單光子寬視野熒光顯微鏡相比,多光子顯微鏡(MPM)具有光學(xué)切片和深層成像等功能,這兩個(gè)優(yōu)勢極大地促進(jìn)了研究者們對于完整大腦深處神經(jīng)的了解與認(rèn)識。2019年,JeromeLecoq等人從大腦深處的神經(jīng)元成像、大量神經(jīng)元成像、高速神經(jīng)元成像這三個(gè)方面論述了相關(guān)的MPM技術(shù)。想要將神經(jīng)元活動與復(fù)雜行為聯(lián)系起來,通常需要對大腦皮質(zhì)深層的神經(jīng)元進(jìn)行成像,這就要求MPM具有深層成像的能力。激發(fā)和發(fā)射光會被生物組織高度散射和吸收是限制MPM成像深度的主要因素,雖然可以通過增加激光強(qiáng)度來解決散射問題,但這會帶來其他問題,例如燒壞樣品、離焦和近表面熒光激發(fā)。增加MPM成像深度比較好的方法是用更長的波長作為激發(fā)光。多光子顯微鏡將生物打印結(jié)構(gòu)準(zhǔn)確定位和定向到特定的解剖部位,使其能夠在小鼠組織內(nèi)制造復(fù)雜結(jié)構(gòu)。在體多光子顯微鏡暗場成像
更多關(guān)于多光子顯微鏡的信息有哪些?Ultima 2P Plus多光子顯微鏡長時(shí)間觀察
對于雙光子成像而言,離焦和近表面熒光激發(fā)是兩個(gè)比較大的深度限制因素,而對于三光子(3P)成像這兩個(gè)問題大大減小,但是三光子成像由于熒光團(tuán)的吸收截面比2P要小得多,所以需要更高數(shù)量級的脈沖能量才能獲得與2P激發(fā)的相同強(qiáng)度的熒光信號。功能性3P顯微鏡比結(jié)構(gòu)性3P顯微鏡的要求更高,它需要更快速的掃描,以便及時(shí)采樣神經(jīng)元活動;需要更高的脈沖能量,以便在每個(gè)像素停留時(shí)間內(nèi)收集足夠的信號。復(fù)雜的行為通常涉及到大型的大腦神經(jīng)網(wǎng)絡(luò),該網(wǎng)絡(luò)既具有局部的連接又具有遠(yuǎn)程的連接。要想將神經(jīng)元活動與行為聯(lián)系起來,需要同時(shí)監(jiān)控非常龐大且分布普遍的神經(jīng)元的活動,大腦中的神經(jīng)網(wǎng)絡(luò)會在幾十毫秒內(nèi)處理傳入的刺激,要想了解這種快速的神經(jīng)元動力學(xué),就需要MPM具備對神經(jīng)元進(jìn)行快速成像的能力??焖費(fèi)PM方法可分為單束掃描技術(shù)和多束掃描技術(shù)。Ultima 2P Plus多光子顯微鏡長時(shí)間觀察