熒光多光子顯微鏡三維分辨率

來源: 發(fā)布時間:2024-10-06

以往我們認識的光電效應是單光子光電效應,即一個電子在極短時間內(nèi)能吸收到一個光子而從金屬表面逸出。強激光的出現(xiàn)豐富了人們對于光電效應的認識,用強激光照射金屬,由于其光子密度極大,一個電子在短時間吸收多個光子成為可能,從而形成多光子電效應,這已被實驗證實。為什么一般討論的光電效應都是指單光子光電效應呢?這是因為,在使用普通光源的情況下,電子吸收兩個以上光子能量的概率是非常非常小的,幾乎為零。事實上,愛因斯坦本人就考慮過在強光下發(fā)生光電效應的可能性問題。對此,他有如下的論述:光電效應中的一個電子吸收兩個光子的幾率不會大于下雨天兩個雨滴同事打在一個螞蟻上的幾率。因此,多光子光電效應在實驗上的研究成為可能,是二十世紀六十年代激光乃至強激光出現(xiàn)以后的事情。有了激光,對于雙光子光電效應,在實驗上和理論上均取得了許多成果。利用強激光,人們不僅觀察到雙光子和三光子的光電效應,甚至觀察到金靶材吸收幾十個等效光子實驗現(xiàn)象。顯微鏡產(chǎn)品正拉動市場需求,多光子顯微鏡市場發(fā)展?jié)摿薮?。熒光多光子顯微鏡三維分辨率

熒光多光子顯微鏡三維分辨率,多光子顯微鏡

雙光子熒光顯微成像主要有以下優(yōu)點∶a.光損傷小∶雙光子熒光顯微鏡使用可見光或近紅外光作為激發(fā)光,對細胞和組織的光損傷很小,適合于長時間的研究;b.穿透能力強∶相對于紫外光,可見光或近紅外光具有很強的穿透性,可以對生物樣品進行深層次的研究;c.高分辨率∶由于雙光子吸收截面很小P,只有在焦平面很小的區(qū)域內(nèi)可以激發(fā)出熒光,雙光子吸收局限于焦點處的體積約為λ范圍內(nèi);d.漂白區(qū)域很小,焦點以外不發(fā)生漂白現(xiàn)象。e.熒光收集率高。與共聚焦成像相比,雙光子成像不需要光學濾波器,提高了熒光收集率。收集效率提高直接導致圖像對比度提高。f.對探測光路的要求低。由于激發(fā)光與發(fā)射熒光的波長差值加大以及自發(fā)的三維濾波效果,多光子顯微鏡對光路收集系統(tǒng)的要求比單光子共焦顯微鏡低得多,光學系統(tǒng)相對簡單。g.適合多標記復合測量。許多染料熒光探針的多光子激發(fā)光譜要比單光子激發(fā)譜寬闊,這樣,可以利用單一波長的激發(fā)光同時激發(fā)多種染料,從而得到同一生命現(xiàn)象中的不同信息,便于相互對照、補充。進口多光子顯微鏡設備光子顯微成像技術不是什么新技術,早在20多年前就有了,目前已經(jīng)在生命科學和材料科學中廣泛應用。

熒光多光子顯微鏡三維分辨率,多光子顯微鏡

快速光柵掃描有多種實現(xiàn)方式,使用振鏡進行快速2D掃描,將振鏡和可調(diào)電動透鏡結合在一起進行快速3D掃描,但可調(diào)電動透鏡由于機械慣性的限制在軸向無法快速進行焦點切換,影響成像速度,現(xiàn)可使用空間光調(diào)制器(SLM)代替。遠程聚焦也是一種實現(xiàn)3D成像的手段。在LSU模塊中,掃描振鏡進行橫向掃描,ASU模塊包括物鏡L1和反射鏡M,通過調(diào)控M的位置實現(xiàn)軸向掃描。該技術不僅可以校正主物鏡L2引入的光學像差,還可以進行快速的軸向掃描。想要獲得更多神經(jīng)元成像,可以通過調(diào)整顯微鏡的物鏡設計來擴大FOV,但是具有大NA和大FOV的物鏡通常重量較大,無法快速移動以進行快速軸向掃描,因此大型FOV系統(tǒng)依賴于遠程聚焦、SLM和可調(diào)電動透鏡。

與傳統(tǒng)的單光子寬視野熒光顯微鏡相比,多光子顯微鏡(MPM)具有光學切片和深層成像等功能,這兩個優(yōu)勢極大地促進了研究者們對于完整大腦深處神經(jīng)的了解與認識。2019年,JeromeLecoq等人從大腦深處的神經(jīng)元成像、大量神經(jīng)元成像、高速神經(jīng)元成像這三個方面論述了相關的MPM技術[1]。想要將神經(jīng)元活動與復雜行為聯(lián)系起來,通常需要對大腦皮質深層的神經(jīng)元進行成像,這就要求MPM具有深層成像的能力。激發(fā)和發(fā)射光會被生物組織高度散射和吸收是限制MPM成像深度的主要因素,雖然可以通過增加激光強度來解決散射問題,但這會帶來其他問題,例如燒壞樣品、離焦和近表面熒光激發(fā)。增加MPM成像深度比較好的方法是用更長的波長作為激發(fā)光。多光子顯微鏡是一種強大的顯微鏡技術,具有廣泛的應用前景和發(fā)展?jié)摿Α?/p>

熒光多光子顯微鏡三維分辨率,多光子顯微鏡

當細胞在受到外界刺激時,隨著刺激時間的增長,即使刺激繼續(xù)存在,Ca2+熒光信號不但不會繼續(xù)增強,反而會減弱,直至恢復到未加刺激物時的水平。對于細胞受精過程中Ca2+熒光信號的變化情況,研究發(fā)現(xiàn),配了在粘著過程中,Ca2+熒光信號未發(fā)生任何變化,而配子之間發(fā)生融合作用時,Ca2+熒光信號強度卻會出現(xiàn)一個不穩(wěn)定的峰值,并可持續(xù)幾分鐘。這些現(xiàn)象,對研究受精發(fā)育的早期信號及Ca2+在卵細胞和受精卵的發(fā)育過程中的作用具有重要的意義。在其它一些生理過程如細胞分裂、胞吐作用等,Ca2+熒光信號強度也會發(fā)生很的變化。多光子顯微鏡,突破生物組織成像深度,洞察細胞間的奧秘。美國全自動多光子顯微鏡設備

OCT可以用于損傷修復監(jiān)測。Yeh等用OCT、多光子顯微鏡。熒光多光子顯微鏡三維分辨率

對于雙光子(2P)成像,散焦和近表面熒光激發(fā)是兩個相對較大的深度限制因素,而對于三光子(3P)成像,這兩個問題**減少。然而,由于熒光團的吸收截面遠小于2P,三光子成像需要更高的脈沖能量才能獲得與2P相同激發(fā)強度的熒光信號。功能性3P顯微鏡比結構性3P顯微鏡要求更高,后者需要更快的掃描速度以便及時采樣神經(jīng)元活動。為了在每個像素的停留時間內(nèi)收集足夠的信號,需要更高的脈沖能量。復雜的行為通常涉及大規(guī)模的大腦神經(jīng)網(wǎng)絡,這些網(wǎng)絡既有本地連接,也有遠程連接。為了將神經(jīng)元的活動與行為聯(lián)系起來,需要同時監(jiān)測***分布的超大型神經(jīng)元的活動。大腦中的神經(jīng)網(wǎng)絡將在幾十毫秒內(nèi)處理輸入的刺激。為了理解這種快速神經(jīng)元動力學,MPM需要快速成像神經(jīng)元的能力。快速MPM方法可分為單束掃描技術和多束掃描技術。熒光多光子顯微鏡三維分辨率